BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26886820)

  • 1. Mechanical and thermal behaviour of an acrylic bone cement modified with a triblock copolymer.
    Paz E; Abenojar J; Ballesteros Y; Forriol F; Dunne N; Del Real JC
    J Mater Sci Mater Med; 2016 Apr; 27(4):72. PubMed ID: 26886820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale characterization of acrylic bone cement modified with functionalized mesoporous silica nanoparticles.
    Slane J; Vivanco J; Ebenstein D; Squire M; Ploeg HL
    J Mech Behav Biomed Mater; 2014 Sep; 37():141-52. PubMed ID: 24911668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexural properties of crosslinked and oligomer-modified glass-fibre reinforced acrylic bone cement.
    Puska MA; Närhi TO; Aho AJ; Yli-Urpo A; Vallittu PK
    J Mater Sci Mater Med; 2004 Sep; 15(9):1037-43. PubMed ID: 15448412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement.
    Kotha SP; Li C; McGinn P; Schmid SR; Mason JJ
    J Mater Sci Mater Med; 2006 Aug; 17(8):743-8. PubMed ID: 16897167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture toughness of steel-fiber-reinforced bone cement.
    Kotha SP; Li C; Schmid SR; Mason JJ
    J Biomed Mater Res A; 2004 Sep; 70(3):514-21. PubMed ID: 15293326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of filler content on static properties of glass-reinforced bone cement.
    Vallo CI
    J Biomed Mater Res; 2000; 53(6):717-27. PubMed ID: 11074432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of oligomer-modified acrylic bone cement.
    Puska MA; Kokkari AK; Närhi TO; Vallittu PK
    Biomaterials; 2003 Feb; 24(3):417-25. PubMed ID: 12423596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a highly-radiopaque iodine-containing acrylic bone cement for use in augmentation of vertebral compression fractures.
    Boelen EJ; Lewis G; Xu J; Slots T; Koole LH; van Hooy-Corstjens CS
    J Biomed Mater Res A; 2008 Jul; 86(1):76-88. PubMed ID: 17941018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of triphenyl bismuth on glass transition temperature and residual monomer content of acrylic bone cements.
    Abdulghani SN; Nazhat SN; Behiri JC; Deb S
    J Biomater Sci Polym Ed; 2003; 14(11):1229-42. PubMed ID: 14768910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymethylmethacrylate-based bone cement modified with hydroxyapatite.
    Vallo CI; Montemartini PE; Fanovich MA; Porto López JM; Cuadrado TR
    J Biomed Mater Res; 1999; 48(2):150-8. PubMed ID: 10331908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the radiopacifier in an acrylic bone cement on its mechanical, thermal, and physical properties: barium sulfate-containing cement versus iodine-containing cement.
    Lewis G; van Hooy-Corstjens CS; Bhattaram A; Koole LH
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):77-87. PubMed ID: 15786447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: properties and biocompatibility assessment.
    Lopes PP; Garcia MP; Fernandes MH; Fernandes MH
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1289-99. PubMed ID: 23827574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties.
    Ormsby R; McNally T; Mitchell C; Dunne N
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):136-45. PubMed ID: 20129413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial strength of novel PMMA/HA/nanoclay bone cement.
    Wang CX; Tong J
    Biomed Mater Eng; 2008; 18(6):367-75. PubMed ID: 19197113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder.
    Yang DH; Yoon GH; Kim SH; Rhee JM; Kim YS; Khang G
    J Biomater Sci Polym Ed; 2005; 16(9):1121-38. PubMed ID: 16231603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture characteristics of acrylic bone cement-bone composites.
    Buckley PJ; Orr JF; Revie IC; Breusch SJ; Dunne NJ
    Proc Inst Mech Eng H; 2003; 217(6):419-27. PubMed ID: 14702980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: I. Fracture toughness.
    Vila MM; Ginebra MP; Gil FJ; Planell JA
    J Biomed Mater Res; 1999; 48(2):121-7. PubMed ID: 10331904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.
    Lewis G; Janna S; Bhattaram A
    Biomaterials; 2005 Jul; 26(20):4317-25. PubMed ID: 15683656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties.
    Slane J; Vivanco J; Meyer J; Ploeg HL; Squire M
    J Mech Behav Biomed Mater; 2014 Jan; 29():451-61. PubMed ID: 24211354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.