BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 26886912)

  • 1. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children.
    Olivieri L; Cross R; O'Brien KJ; Xue H; Kellman P; Hansen MS
    Pediatr Radiol; 2016 Jun; 46(7):983-90. PubMed ID: 26886912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of free-breathing motion-corrected late gadolinium enhancement technique for image quality assessment and LGE quantification.
    Yu Y; Chen Y; Zhao S; Ge M; Yang S; Yun H; Bi X; Fu C; Zeng M; Jin H
    Eur J Radiol; 2021 Feb; 135():109510. PubMed ID: 33401112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of two single-breath-held 3-D acquisitions with multi-breath-held 2-D cine steady-state free precession MRI acquisition in children with single ventricles.
    Atweh LA; Dodd NA; Krishnamurthy R; Pednekar A; Chu ZD; Krishnamurthy R
    Pediatr Radiol; 2016 May; 46(5):637-45. PubMed ID: 26902296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardial motion-corrected phase-sensitive inversion recovery late gadolinium enhancement in free breathing paediatric patients: a comparison with single-shot coherent gradient echo ("TrueFISP") phase-sensitive inversion recovery.
    Xie LJ; Xu R; Xu ZY; Li XS; Zhou XY; Bi XM; Mu JS; Fan HM; Xu HY; Guo YK
    Clin Radiol; 2021 Jun; 76(6):471.e17-471.e25. PubMed ID: 33663913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-breathing, motion-corrected late gadolinium enhancement is robust and extends risk stratification to vulnerable patients.
    Piehler KM; Wong TC; Puntil KS; Zareba KM; Lin K; Harris DM; Deible CR; Lacomis JM; Czeyda-Pommersheim F; Cook SC; Kellman P; Schelbert EB
    Circ Cardiovasc Imaging; 2013 May; 6(3):423-32. PubMed ID: 23599309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-Breathing Motion-Corrected Single-Shot Phase-Sensitive Inversion Recovery Late-Gadolinium-Enhancement Imaging: A Prospective Study of Image Quality in Patients with Hypertrophic Cardiomyopathy.
    Cha MJ; Cho I; Hong J; Kim SW; Shin SY; Paek MY; Bi X; Kim SM
    Korean J Radiol; 2021 Jul; 22(7):1044-1053. PubMed ID: 33856138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging.
    Munoz C; Bustin A; Neji R; Kunze KP; Forman C; Schmidt M; Hajhosseiny R; Masci PG; Zeilinger M; Wuest W; Botnar RM; Prieto C
    J Cardiovasc Magn Reson; 2020 Jul; 22(1):53. PubMed ID: 32684167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial late gadolinium enhancement using delayed 3D IR-FLASH in the pediatric population: feasibility and diagnostic performance compared to single-shot PSIR-bSSFP.
    Saprungruang A; Aguet J; Gill N; Tassos VP; Amirabadi A; Seed M; Yoo SJ; Lam CZ
    J Cardiovasc Magn Reson; 2023 Jan; 25(1):2. PubMed ID: 36683053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of cardiac magnetic-resonance-derived left ventricular strain measurements from free-breathing motion-corrected cine imaging.
    Merlocco A; Cross RR; Kellman P; Xue H; Olivieri L
    Pediatr Radiol; 2019 Jan; 49(1):68-75. PubMed ID: 30244412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of fast multi-slice and standard segmented techniques for detection of late gadolinium enhancement in ischemic and non-ischemic cardiomyopathy - a prospective clinical cardiovascular magnetic resonance trial.
    Muehlberg F; Arnhold K; Fritschi S; Funk S; Prothmann M; Kermer J; Zange L; von Knobelsdorff-Brenkenhoff F; Schulz-Menger J
    J Cardiovasc Magn Reson; 2018 Feb; 20(1):13. PubMed ID: 29458430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial late gadolinium enhancement: a head-to-head comparison of motion-corrected balanced steady-state free precession with segmented turbo fast low angle shot.
    Fan H; Li S; Lu M; Yin G; Yang X; Lan T; Dai L; Chen X; Li J; Zhang Y; Sirajuddin A; Kellman P; Arai AE; Zhao S
    Clin Radiol; 2018 Jun; 73(6):593.e1-593.e9. PubMed ID: 29548551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of free-breathing late gadolinium-enhanced cardiovascular MRI for assessment of myocardial infarction: navigator-gated versus single-shot imaging.
    Matsumoto H; Matsuda T; Miyamoto K; Nakatsuma K; Sugahara M; Shimada T
    Int J Cardiol; 2013 Sep; 168(1):94-9. PubMed ID: 23040999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D late gadolinium enhancement in a single prolonged breath-hold using supplemental oxygenation and hyperventilation.
    Roujol S; Basha TA; Akçakaya M; Foppa M; Chan RH; Kissinger KV; Goddu B; Berg S; Manning WJ; Nezafat R
    Magn Reson Med; 2014 Sep; 72(3):850-7. PubMed ID: 24186772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of image quality of wideband single-shot late gadolinium-enhancement MRI in patients with a cardiac implantable electronic device.
    Schwartz SM; Pathrose A; Serhal AM; Ragin AB; Charron J; Knight BP; Passman RS; Avery RJ; Kim D
    J Cardiovasc Electrophysiol; 2021 Jan; 32(1):138-147. PubMed ID: 33146422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging.
    Johnson JT; Robinson JD; Deng J; Rigsby CK
    Pediatr Radiol; 2016 Dec; 46(13):1822-1830. PubMed ID: 27576457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility study of a single breath-hold, 3D mDIXON pulse sequence for late gadolinium enhancement imaging of ischemic scar.
    Foley JRJ; Fent GJ; Garg P; Broadbent DA; Dobson LE; Chew PG; Brown LAE; Swoboda PP; Plein S; Higgins DM; Greenwood JP
    J Magn Reson Imaging; 2019 May; 49(5):1437-1445. PubMed ID: 30597661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free-breathing myocardial T2* mapping using GRE-EPI and automatic non-rigid motion correction.
    Jin N; da Silveira JS; Jolly MP; Firmin DN; Mathew G; Lamba N; Subramanian S; Pennell DJ; Raman SV; Simonetti OP
    J Cardiovasc Magn Reson; 2015 Dec; 17():113. PubMed ID: 26699850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved myocardial scar visualization with fast free-breathing motion-compensated black-blood T
    Sridi S; Nuñez-Garcia M; Sermesant M; Maillot A; Hamrani DE; Magat J; Naulin J; Laurent F; Montaudon M; Jaïs P; Stuber M; Cochet H; Bustin A
    Diagn Interv Imaging; 2022 Dec; 103(12):607-617. PubMed ID: 35961843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality assessment of cardiac magnetic resonance myocardial scar imaging prior to ventricular arrhythmia ablation.
    Shah R; Sharma A; Assis F; De Vasconcellos HD; Alugubelli N; Pandey P; Akhtar T; Gasperetti A; Zhou S; Halperin H; Zimmerman SL; Tandri H; Kolandaivelu A
    Int J Cardiovasc Imaging; 2023 Feb; 39(2):411-421. PubMed ID: 36331683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical application of free-breathing 3D whole heart late gadolinium enhancement cardiovascular magnetic resonance with high isotropic spatial resolution using Compressed SENSE.
    Pennig L; Lennartz S; Wagner A; Sokolowski M; Gajzler M; Ney S; Laukamp KR; Persigehl T; Bunck AC; Maintz D; Weiss K; Naehle CP; Doerner J
    J Cardiovasc Magn Reson; 2020 Dec; 22(1):89. PubMed ID: 33327958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.