These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2688733)

  • 1. A new method for Doppler frequency analysis that promises a major improvement in performance.
    Vaitkus PJ; Johnston KW; Cobbold RS
    Ann Vasc Surg; 1989 Oct; 3(4):364-9. PubMed ID: 2688733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound.
    David JY; Jones SA; Giddens DP
    IEEE Trans Biomed Eng; 1991 Jun; 38(6):589-96. PubMed ID: 1879848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):293-306. PubMed ID: 15121001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of short-time spectral parametric methods for reducing the variance of the Doppler ultrasound mean instantaneous frequency estimation.
    Sava H; Durand LG; Cloutier G
    Med Biol Eng Comput; 1999 May; 37(3):291-7. PubMed ID: 10505377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction for broadening in Doppler blood flow spectrum estimated using wavelet transform.
    Zhang Y; Xu L; Chen J; Ma H; Shi X
    Med Eng Phys; 2006 Jul; 28(6):596-603. PubMed ID: 16256404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of classical and model-based spectral methods to ophthalmic arterial Doppler signals with uveitis disease.
    Güler I; Ubeyli ED
    Comput Biol Med; 2003 Nov; 33(6):455-71. PubMed ID: 12878231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the autoregressive modeling and fast Fourier transformation in demonstrating Doppler spectral waveform changes in the early phase of atherosclerosis.
    Dirgenali F; Kara S; Erdogan N; Okandan M
    Comput Biol Med; 2005 Jan; 35(1):57-66. PubMed ID: 15567352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the power structures of Fourier transform and autoregressive spectral estimates of narrow-band Doppler signals.
    Fan L; Evans DH
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):387-90. PubMed ID: 8063305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoregressive-based sonogram outputs of 20 MHz pulsed Doppler data.
    Güler NF; Kiymik MK; Güler I
    Med Prog Technol; 1995 May; 21(2):105-10. PubMed ID: 7565395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery.
    Guo Z; Durand LG; Lee HC
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):332-42. PubMed ID: 8063299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doppler waveform analysis in the management of lower limb arterial disease.
    Campbell WB
    Ann R Coll Surg Engl; 1986 Mar; 68(2):103-6. PubMed ID: 2937360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Doppler signal analysis techniques for velocity waveform, turbulence and vortex measurement: a simulation study.
    Wang Y; Fish PJ
    Ultrasound Med Biol; 1996; 22(5):635-49. PubMed ID: 8865559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
    Zhang Y; Guo Z; Wang W; He S; Lee T; Loew M
    Med Eng Phys; 2003 Sep; 25(7):547-57. PubMed ID: 12835067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of stenosis and occlusion in arteries with the application of FFT, AR, and ARMA methods.
    Ubeyli ED; Güler I
    J Med Syst; 2003 Apr; 27(2):105-20. PubMed ID: 12617353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of lower limb arterial stenoses from Doppler blood flow signal analysis with time-frequency representation and pattern recognition techniques.
    Guo Z; Durand LG; Allard L; Cloutier G; Lee HC
    Ultrasound Med Biol; 1994; 20(4):335-46. PubMed ID: 8085290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonstationarity broadening reduction in pulsed Doppler spectrum measurements using time-frequency estimators.
    Cardoso JC; Ruano MG; Fish PJ
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1176-86. PubMed ID: 9214836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptive approach to computing the spectrum and mean frequency of Doppler signals.
    Herment A; Giovannelli JF
    Ultrason Imaging; 1995 Jan; 17(1):1-26. PubMed ID: 7638930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time digital processing of Doppler ultrasound signals and calculation of flow parameters.
    Schlindwein FS; Vieira MH; Vasconcelos CF; Simpson DM
    Med Prog Technol; 1994; 20(1-2):81-9. PubMed ID: 7968870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Quadrature Doppler ultrasound signal denoising based on adapted local cosine transform].
    Wang X; Shen Y; Liu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1114-7. PubMed ID: 17121366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of laser Doppler flux motion in man: comparison of autoregressive modelling and fast Fourier transformation.
    Weidenhagen R; Wichmann A; Koebe HG; Lauterjung L; Fürst H; Messmer K
    Int J Microcirc Clin Exp; 1996; 16(2):64-73. PubMed ID: 8737709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.