BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26887569)

  • 1. Synthesis of chiral 2-alkanols from n-alkanes by a P. putida whole-cell biocatalyst.
    Tieves F; Erenburg IN; Mahmoud O; Urlacher VB
    Biotechnol Bioeng; 2016 Sep; 113(9):1845-52. PubMed ID: 26887569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel P450-based biocatalyst for the selective production of chiral 2-alkanols.
    von Bühler CJ; Urlacher VB
    Chem Commun (Camb); 2014 Apr; 50(31):4089-91. PubMed ID: 24618874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1.
    Mi J; Schewe H; Buchhaupt M; Holtmann D; Schrader J
    World J Microbiol Biotechnol; 2016 Jul; 32(7):112. PubMed ID: 27263007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C; Woodley JM; Baganz F
    Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
    Peters MW; Meinhold P; Glieder A; Arnold FH
    J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes.
    Grant C; Deszcz D; Wei YC; Martínez-Torres RJ; Morris P; Folliard T; Sreenivasan R; Ward J; Dalby P; Woodley JM; Baganz F
    Sci Rep; 2014 Jul; 4():5844. PubMed ID: 25068650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of 1-Dodecanol, 1-Tetradecanol, and 1,12-Dodecanediol through Whole-Cell Biotransformation in Escherichia coli.
    Hsieh SC; Wang JH; Lai YC; Su CY; Lee KT
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666.
    Scheps D; Malca SH; Hoffmann H; Nestl BM; Hauer B
    Org Biomol Chem; 2011 Oct; 9(19):6727-33. PubMed ID: 21837346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of alpha, omega-alkanediols using Escherichia coli expressing a cytochrome P450 from Acinetobacter sp. OC4.
    Fujii T; Narikawa T; Sumisa F; Arisawa A; Takeda K; Kato J
    Biosci Biotechnol Biochem; 2006 Jun; 70(6):1379-85. PubMed ID: 16794317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
    Eggink G; Lageveen RG; Altenburg B; Witholt B
    J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-cell double oxidation of n-heptane.
    Müller CA; Dennig A; Welters T; Winkler T; Ruff AJ; Hummel W; Gröger H; Schwaneberg U
    J Biotechnol; 2014 Dec; 191():196-204. PubMed ID: 24925696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.
    Schrewe M; Julsing MK; Lange K; Czarnotta E; Schmid A; Bühler B
    Biotechnol Bioeng; 2014 Sep; 111(9):1820-30. PubMed ID: 24852702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5.
    Liu C; Wang W; Wu Y; Zhou Z; Lai Q; Shao Z
    Environ Microbiol; 2011 May; 13(5):1168-78. PubMed ID: 21261799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of alkanes, alcohols, and aldehydes using bioluminescence.
    Minak-Bernero V; Bare RE; Haith CE; Grossman MJ
    Biotechnol Bioeng; 2004 Jul; 87(2):170-7. PubMed ID: 15236245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New alkane-responsive expression vectors for Escherichia coli and pseudomonas.
    Smits TH; Seeger MA; Witholt B; van Beilen JB
    Plasmid; 2001 Jul; 46(1):16-24. PubMed ID: 11535032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols.
    Rojas A; Duque E; Schmid A; Hurtado A; Ramos JL; Segura A
    Appl Environ Microbiol; 2004 Jun; 70(6):3637-43. PubMed ID: 15184168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-cell biotransformation with recombinant cytochrome P450 for the selective oxidation of Grundmann's ketone.
    Hernández-Martín A; von Bühler CJ; Tieves F; Fernández S; Ferrero M; Urlacher VB
    Bioorg Med Chem; 2014 Oct; 22(20):5586-92. PubMed ID: 25023538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes.
    Benedetti I; de Lorenzo V; Nikel PI
    Metab Eng; 2016 Jan; 33():109-118. PubMed ID: 26620533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases.
    van Beilen JB; Funhoff EG; van Loon A; Just A; Kaysser L; Bouza M; Holtackers R; Röthlisberger M; Li Z; Witholt B
    Appl Environ Microbiol; 2006 Jan; 72(1):59-65. PubMed ID: 16391025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.