These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26887777)

  • 1. Extremely Low Frequency Electromagnetic Fields Facilitate Vesicle Endocytosis by Increasing Presynaptic Calcium Channel Expression at a Central Synapse.
    Sun ZC; Ge JL; Guo B; Guo J; Hao M; Wu YC; Lin YA; La T; Yao PT; Mei YA; Feng Y; Xue L
    Sci Rep; 2016 Feb; 6():21774. PubMed ID: 26887777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal.
    Baydyuk M; Wu XS; He L; Wu LG
    J Neurosci; 2015 Mar; 35(11):4676-82. PubMed ID: 25788684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-Independent Exo-endocytosis Coupling at Small Central Synapses.
    Orlando M; Schmitz D; Rosenmund C; Herman MA
    Cell Rep; 2019 Dec; 29(12):3767-3774.e3. PubMed ID: 31851910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for patch clamp capacitance recordings from the calyx.
    Paradiso K; Wu W; Wu LG
    J Vis Exp; 2007; (6):244. PubMed ID: 18997892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons.
    Luo FL; Yang N; He C; Li HL; Li C; Chen F; Xiong JX; Hu ZA; Zhang J
    Environ Res; 2014 Nov; 135():236-46. PubMed ID: 25462671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus.
    Miyazaki K; Ishizuka T; Yawo H
    Neuroscience; 2005; 136(4):1003-14. PubMed ID: 16226383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway.
    Cui Y; Liu X; Yang T; Mei YA; Hu C
    Cell Calcium; 2014 Jan; 55(1):48-58. PubMed ID: 24360572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells.
    Kim HJ; Jung J; Park JH; Kim JH; Ko KN; Kim CW
    Exp Biol Med (Maywood); 2013 Aug; 238(8):923-31. PubMed ID: 23970408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Developmental Neurotoxicity Following Chronic Exposure to 50 Hz Extremely Low-Frequency Electromagnetic Fields in Primary Rat Cortical Cultures.
    de Groot MW; van Kleef RG; de Groot A; Westerink RH
    Toxicol Sci; 2016 Feb; 149(2):433-40. PubMed ID: 26572663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1.
    Ma Q; Chen C; Deng P; Zhu G; Lin M; Zhang L; Xu S; He M; Lu Y; Duan W; Pi H; Cao Z; Pei L; Li M; Liu C; Zhang Y; Zhong M; Zhou Z; Yu Z
    PLoS One; 2016; 11(3):e0150923. PubMed ID: 26950212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity.
    Mochida S
    Neurosci Res; 2011 May; 70(1):16-23. PubMed ID: 21453732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium channel regulation and presynaptic plasticity.
    Catterall WA; Few AP
    Neuron; 2008 Sep; 59(6):882-901. PubMed ID: 18817729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation.
    Renden R; von Gersdorff H
    J Neurophysiol; 2007 Dec; 98(6):3349-59. PubMed ID: 17942618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically stressed PC12 cells.
    de Groot MW; Kock MD; Westerink RH
    Neurotoxicology; 2014 Sep; 44():358-64. PubMed ID: 25111744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields.
    Seong Y; Moon J; Kim J
    Life Sci; 2014 Apr; 102(1):16-27. PubMed ID: 24603130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat.
    Komaki A; Khalili A; Salehi I; Shahidi S; Sarihi A
    Brain Res; 2014 May; 1564():1-8. PubMed ID: 24727530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held.
    Midorikawa M; Okamoto Y; Sakaba T
    J Physiol; 2014 Aug; 592(16):3495-510. PubMed ID: 24907302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-dependent regulation of synaptic vesicle endocytosis.
    Yamashita T
    Neurosci Res; 2012 May; 73(1):1-7. PubMed ID: 22401840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-Term Extremely Low-Frequency Electromagnetic Field Inhibits Synaptic Plasticity of Schaffer Collateral-CA1 Synapses in Rat Hippocampus via the Ca
    Xia P; Zheng Y; Dong L; Tian C
    ACS Chem Neurosci; 2021 Oct; 12(19):3550-3557. PubMed ID: 34498467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice.
    Ishikawa T; Kaneko M; Shin HS; Takahashi T
    J Physiol; 2005 Oct; 568(Pt 1):199-209. PubMed ID: 16037093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.