These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26888093)

  • 1. Meta-analysis with missing study-level sample variance data.
    Chowdhry AK; Dworkin RH; McDermott MP
    Stat Med; 2016 Jul; 35(17):3021-32. PubMed ID: 26888093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates.
    Quartagno M; Carpenter JR
    Stat Med; 2016 Jul; 35(17):2938-54. PubMed ID: 26681666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining multiple imputation and meta-analysis with individual participant data.
    Burgess S; White IR; Resche-Rigon M; Wood AM
    Stat Med; 2013 Nov; 32(26):4499-514. PubMed ID: 23703895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis of test accuracy studies using imputation for partial reporting of multiple thresholds.
    Ensor J; Deeks JJ; Martin EC; Riley RD
    Res Synth Methods; 2018 Mar; 9(1):100-115. PubMed ID: 29052347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiple imputation approach for MNAR mechanisms compatible with Heckman's model.
    Galimard JE; Chevret S; Protopopescu C; Resche-Rigon M
    Stat Med; 2016 Jul; 35(17):2907-20. PubMed ID: 26893215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome.
    Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ
    BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple imputation in the presence of non-normal data.
    Lee KJ; Carlin JB
    Stat Med; 2017 Feb; 36(4):606-617. PubMed ID: 27862164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-step semiparametric method to accommodate sampling weights in multiple imputation.
    Zhou H; Elliott MR; Raghunathan TE
    Biometrics; 2016 Mar; 72(1):242-52. PubMed ID: 26393409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
    Niedhammer I; Milner A; Witt K; Klingelschmidt J; Khireddine-Medouni I; Alexopoulos EC; Toivanen S; Chastang JF; LaMontagne AD
    Scand J Work Environ Health; 2018 Jan; 44(1):108-110. PubMed ID: 29218357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical methodology for estimating the mean difference in a meta-analysis without study-specific variance information.
    Sangnawakij P; Böhning D; Adams S; Stanton M; Holling H
    Stat Med; 2017 Apr; 36(9):1395-1413. PubMed ID: 28168731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation in closed capture-recapture models when covariates are missing at random.
    Lee SM; Hwang WH; de Dieu Tapsoba J
    Biometrics; 2016 Dec; 72(4):1294-1304. PubMed ID: 26909877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imputation of missing variance data using non-linear mixed effects modelling to enable an inverse variance weighted meta-analysis of summary-level longitudinal data: a case study.
    Boucher M
    Pharm Stat; 2012; 11(4):318-24. PubMed ID: 22566382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A note on dealing with missing standard errors in meta-analyses of continuous outcome measures in WinBUGS.
    Stevens JW
    Pharm Stat; 2011; 10(4):374-8. PubMed ID: 21394888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE.
    Jolani S; Debray TP; Koffijberg H; van Buuren S; Moons KG
    Stat Med; 2015 May; 34(11):1841-63. PubMed ID: 25663182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing?
    Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB
    Trials; 2016 Jul; 17():341. PubMed ID: 27450066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On inference of control-based imputation for analysis of repeated binary outcomes with missing data.
    Gao F; Liu G; Zeng D; Diao G; Heyse JF; Ibrahim JG
    J Biopharm Stat; 2017; 27(3):358-372. PubMed ID: 28287873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach.
    Erler NS; Rizopoulos D; Rosmalen Jv; Jaddoe VW; Franco OH; Lesaffre EM
    Stat Med; 2016 Jul; 35(17):2955-74. PubMed ID: 27042954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of multiple imputation of missing standard deviations and sample sizes in meta-analysis.
    Kambach S; Bruelheide H; Gerstner K; Gurevitch J; Beckmann M; Seppelt R
    Ecol Evol; 2020 Oct; 10(20):11699-11712. PubMed ID: 33144994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trial arm outcome variance difference after dropout as an indicator of missing-not-at-random bias in randomized controlled trials.
    Hazewinkel AD; Tilling K; Wade KH; Palmer T
    Biom J; 2023 Dec; 65(8):e2200116. PubMed ID: 37727079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doubly robust and multiple-imputation-based generalized estimating equations.
    Birhanu T; Molenberghs G; Sotto C; Kenward MG
    J Biopharm Stat; 2011 Mar; 21(2):202-25. PubMed ID: 21390997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.