These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26888098)

  • 1. An asymmetric outer retinal response to drifting sawtooth gratings.
    Riddell N; Hugrass L; Jayasuriya J; Crewther SG; Crewther DP
    J Neurophysiol; 2016 May; 115(5):2349-58. PubMed ID: 26888098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal pathway origins of the pattern ERG of the mouse.
    Miura G; Wang MH; Ivers KM; Frishman LJ
    Exp Eye Res; 2009 Jun; 89(1):49-62. PubMed ID: 19250935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques. Macaque photopic sinusoidal flicker ERG.
    Viswanathan S; Frishman LJ; Robson JG
    Doc Ophthalmol; 2002 Sep; 105(2):223-42. PubMed ID: 12462445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus-evoked intrinsic optical signals in the retina: pharmacologic dissection reveals outer retinal origins.
    Schallek J; Kardon R; Kwon Y; Abramoff M; Soliz P; Ts'o D
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4873-80. PubMed ID: 19420331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luminance dependence of neural components that underlies the primate photopic electroretinogram.
    Ueno S; Kondo M; Niwa Y; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1033-40. PubMed ID: 14985327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Effects of APB, PDA, and TTX on monkey ERG responses.
    Hare WA; Ton H
    Doc Ophthalmol; 2002 Sep; 105(2):189-222. PubMed ID: 12462444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal whole field sawtooth flicker without a spatial component elicits a myopic shift following optical defocus irrespective of waveform direction in chicks.
    Murphy MJ; Riddell N; Crewther DP; Simpson D; Crewther SG
    PeerJ; 2019; 7():e6277. PubMed ID: 30697484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2500-7. PubMed ID: 12091456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG.
    Rangaswamy NV; Hood DC; Frishman LJ
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3233-47. PubMed ID: 12824276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular origin of intrinsic optical signals in the rabbit retina.
    Naderian A; Bussières L; Thomas S; Lesage F; Casanova C
    Vision Res; 2017 Aug; 137():40-49. PubMed ID: 28687326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primate Retinal Signaling Pathways: Suppressing ON-Pathway Activity in Monkey With Glutamate Analogues Mimics Human CSNB1-NYX Genetic Night Blindness.
    Khan NW; Kondo M; Hiriyanna KT; Jamison JA; Bush RA; Sieving PA
    J Neurophysiol; 2005 Jan; 93(1):481-92. PubMed ID: 15331616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina.
    Rangaswamy NV; Frishman LJ; Dorotheo EU; Schiffman JS; Bahrani HM; Tang RA
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3827-37. PubMed ID: 15452095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two distinct processes are evident in rat cone flicker ERG responses at low and high temporal frequencies.
    Qian H; Shah MR; Alexander KR; Ripps H
    Exp Eye Res; 2008 Jul; 87(1):71-5. PubMed ID: 18555992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacologically defined components of the normal porcine multifocal ERG.
    Ng YF; Chan HH; Chu PH; Siu AW; To CH; Beale BA; Gilger BC; Wong F
    Doc Ophthalmol; 2008 May; 116(3):165-76. PubMed ID: 17721791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits.
    Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Spectral Characteristics of Ganzfeld Stimuli on the Photopic Negative Response (PhNR) of the ERG.
    Rangaswamy NV; Shirato S; Kaneko M; Digby BI; Robson JG; Frishman LJ
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4818-28. PubMed ID: 17898309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inner retinal contributions to the primate photopic fast flicker electroretinogram.
    Bush RA; Sieving PA
    J Opt Soc Am A Opt Image Sci Vis; 1996 Mar; 13(3):557-65. PubMed ID: 8627412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal origins of the primate multifocal ERG: implications for the human response.
    Hood DC; Frishman LJ; Saszik S; Viswanathan S
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1673-85. PubMed ID: 11980890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The characteristics of multifocal electroretinogram in isolated perfused porcine eye: cellular contributions to the in vitro porcine mfERG.
    Ng YF; Chan HH; To CH; Yap MK
    Doc Ophthalmol; 2008 Nov; 117(3):205-14. PubMed ID: 18386088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.