These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 26888109)
1. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat. Jones SE; Dutschmann M J Neurophysiol; 2016 May; 115(5):2593-607. PubMed ID: 26888109 [TBL] [Abstract][Full Text] [Related]
2. The nucleus retroambiguus as possible site for inspiratory rhythm generation caudal to obex. Jones SE; Saad M; Lewis DI; Subramanian HH; Dutschmann M Respir Physiol Neurobiol; 2012 Mar; 180(2-3):305-10. PubMed ID: 22210466 [TBL] [Abstract][Full Text] [Related]
3. The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus. Dhingra RR; Furuya WI; Yoong YK; Dutschmann M Respir Physiol Neurobiol; 2024 Feb; 320():104202. PubMed ID: 38049044 [TBL] [Abstract][Full Text] [Related]
4. Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. Smith JC; Abdala AP; Koizumi H; Rybak IA; Paton JF J Neurophysiol; 2007 Dec; 98(6):3370-87. PubMed ID: 17913982 [TBL] [Abstract][Full Text] [Related]
5. Pre-Bötzinger complex functions as a central hypoxia chemosensor for respiration in vivo. Solomon IC; Edelman NH; Neubauer JA J Neurophysiol; 2000 May; 83(5):2854-68. PubMed ID: 10805683 [TBL] [Abstract][Full Text] [Related]
6. Rhythmic bursting of pre- and post-inspiratory neurones during central apnoea in mature mice. Paton JF J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):623-39. PubMed ID: 9279813 [TBL] [Abstract][Full Text] [Related]
7. The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception. Gdovin MJ; Torgerson CS; Remmers JE Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):275-86. PubMed ID: 10665380 [TBL] [Abstract][Full Text] [Related]
8. Pattern formation and rhythm generation in the ventral respiratory group. McCrimmon DR; Monnier A; Hayashi F; Zuperku EJ Clin Exp Pharmacol Physiol; 2000; 27(1-2):126-31. PubMed ID: 10696541 [TBL] [Abstract][Full Text] [Related]
9. Central respiratory effects on motor nerve activities after organophosphate exposure in a working heart brainstem preparation of the rat. Klein-Rodewald T; Seeger T; Dutschmann M; Worek F; Mörschel M Toxicol Lett; 2011 Sep; 206(1):94-9. PubMed ID: 21767620 [TBL] [Abstract][Full Text] [Related]
10. Modulation of expiratory motor output evoked by chemical activation of pre-Bötzinger complex in vivo. Solomon IC Respir Physiol Neurobiol; 2002 Jun; 130(3):235-51. PubMed ID: 12093621 [TBL] [Abstract][Full Text] [Related]
11. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat. Solomon IC; Chon KH; Rodriguez MN J Neurophysiol; 2003 Jan; 89(1):135-49. PubMed ID: 12522166 [TBL] [Abstract][Full Text] [Related]
12. Patterns of phrenic motor output evoked by chemical stimulation of neurons located in the pre-Bötzinger complex in vivo. Solomon IC; Edelman NH; Neubauer JA J Neurophysiol; 1999 Mar; 81(3):1150-61. PubMed ID: 10085342 [TBL] [Abstract][Full Text] [Related]
13. Excitation-inhibition balance regulates the patterning of spinal and cranial inspiratory motor outputs in rats in situ. Dhingra RR; Furuya WI; Galán RF; Dutschmann M Respir Physiol Neurobiol; 2019 Aug; 266():95-102. PubMed ID: 31055189 [TBL] [Abstract][Full Text] [Related]
14. Respiratory motor output of the sectioned medulla of the neonatal rat. McLean HA; Remmers JE Respir Physiol; 1994 Apr; 96(1):49-60. PubMed ID: 8023020 [TBL] [Abstract][Full Text] [Related]
15. [Effect of microsectioning medulla, pH and temperature on rhythmical respiratory discharge activity of medulla-spinal preparation isolated from newborn rat]. Hu DH; Wu ZH; Gao Y Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2001 Feb; 17(1):25-8. PubMed ID: 21171434 [TBL] [Abstract][Full Text] [Related]
16. Reflex response and convergence of pharyngoesophageal and peripheral chemoreceptors in the nucleus of the solitary tract. Paton JF; Li YW; Kasparov S Neuroscience; 1999; 93(1):143-54. PubMed ID: 10430479 [TBL] [Abstract][Full Text] [Related]
17. Transient Receptor Potential Channels TRPM4 and TRPC3 Critically Contribute to Respiratory Motor Pattern Formation but not Rhythmogenesis in Rodent Brainstem Circuits. Koizumi H; John TT; Chia JX; Tariq MF; Phillips RS; Mosher B; Chen Y; Thompson R; Zhang R; Koshiya N; Smith JC eNeuro; 2018; 5(1):. PubMed ID: 29435486 [TBL] [Abstract][Full Text] [Related]
18. Raphé neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. Ptak K; Yamanishi T; Aungst J; Milescu LS; Zhang R; Richerson GB; Smith JC J Neurosci; 2009 Mar; 29(12):3720-37. PubMed ID: 19321769 [TBL] [Abstract][Full Text] [Related]
19. The role of the Kölliker-Fuse nuclei in the determination of abdominal motor output in a perfused brainstem preparation of juvenile rat. Bautista TG; Dutschmann M Respir Physiol Neurobiol; 2016 Jun; 226():102-9. PubMed ID: 26254869 [TBL] [Abstract][Full Text] [Related]