These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26888224)

  • 1. Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries.
    Kumar N; Siegel DJ
    J Phys Chem Lett; 2016 Mar; 7(5):874-81. PubMed ID: 26888224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces.
    Kim K; Siegel DJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39940-39950. PubMed ID: 31576739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-Driven Insight into the Reductive Stability of Ion-Solvent Complexes in Lithium Battery Electrolytes.
    Gao YC; Yao N; Chen X; Yu L; Zhang R; Zhang Q
    J Am Chem Soc; 2023 Nov; 145(43):23764-23770. PubMed ID: 37703183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes.
    Schwietert TK; Arszelewska VA; Wang C; Yu C; Vasileiadis A; de Klerk NJJ; Hageman J; Hupfer T; Kerkamm I; Xu Y; van der Maas E; Kelder EM; Ganapathy S; Wagemaker M
    Nat Mater; 2020 Apr; 19(4):428-435. PubMed ID: 31932670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn
    Choi D; Kang J; Park J; Han B
    Phys Chem Chem Phys; 2018 May; 20(17):11592-11597. PubMed ID: 29588999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations.
    Zhu Y; He X; Mo Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23685-93. PubMed ID: 26440586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Origin of the Reduced Reductive Stability of Ion-Solvent Complexes on Alkali and Alkaline Earth Metal Anodes.
    Chen X; Li HR; Shen X; Zhang Q
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16643-16647. PubMed ID: 30334312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)).
    Bryantsev VS; Giordani V; Walker W; Blanco M; Zecevic S; Sasaki K; Uddin J; Addison D; Chase GV
    J Phys Chem A; 2011 Nov; 115(44):12399-409. PubMed ID: 21962008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards high throughput screening of electrochemical stability of battery electrolytes.
    Borodin O; Olguin M; Spear CE; Leiter KW; Knap J
    Nanotechnology; 2015 Sep; 26(35):354003. PubMed ID: 26266636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.
    McCloskey BD
    J Phys Chem Lett; 2015 Nov; 6(22):4581-8. PubMed ID: 26722800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.
    Yoo HD; Liang Y; Li Y; Yao Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7001-7. PubMed ID: 25799037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries.
    Tutusaus O; Mohtadi R; Arthur TS; Mizuno F; Nelson EG; Sevryugina YV
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7900-4. PubMed ID: 26013580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium Anthracene System-Based Electrolyte as a Promoter of High Electrochemical Performance Rechargeable Magnesium Batteries.
    Hebié S; Alloin F; Iojoiu C; Berthelot R; Leprêtre JC
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5527-5533. PubMed ID: 29292985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building
    Kopač Lautar A; Bitenc J; Dominko R; Filhol JS
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8263-8273. PubMed ID: 33590762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.