These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 26888543)
1. Nanofiber scaffolds influence organelle structure and function in bone marrow stromal cells. Tutak W; Jyotsnendu G; Bajcsy P; Simon CG J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):989-1001. PubMed ID: 26888543 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo biological characterization of poly(lactic acid) fiber scaffolds synthesized by air jet spinning. Granados-Hernández MV; Serrano-Bello J; Montesinos JJ; Alvarez-Gayosso C; Medina-Velázquez LA; Alvarez-Fregoso O; Alvarez-Perez MA J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2435-2446. PubMed ID: 29193687 [TBL] [Abstract][Full Text] [Related]
4. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903 [TBL] [Abstract][Full Text] [Related]
5. Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films. Baker BA; Pine PS; Chatterjee K; Kumar G; Lin NJ; McDaniel JH; Salit ML; Simon CG Biomaterials; 2014 Aug; 35(25):6716-26. PubMed ID: 24840613 [TBL] [Abstract][Full Text] [Related]
7. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297 [TBL] [Abstract][Full Text] [Related]
8. Aligned nanofiber material supports cell growth and increases osteogenesis in canine adipose-derived mesenchymal stem cells in vitro. Pandey S; Rathore K; Johnson J; Cekanova M J Biomed Mater Res A; 2018 Jul; 106(7):1780-1788. PubMed ID: 29468805 [TBL] [Abstract][Full Text] [Related]
9. Elucidating molecular events underlying topography mediated cardiomyogenesis of stem cells on 3D nanofibrous scaffolds. Ghosh LD; Jain A; Sundaresan NR; Chatterjee K Mater Sci Eng C Mater Biol Appl; 2018 Jul; 88():104-114. PubMed ID: 29636125 [TBL] [Abstract][Full Text] [Related]
10. Early time-point cell morphology classifiers successfully predict human bone marrow stromal cell differentiation modulated by fiber density in nanofiber scaffolds. Chen D; Dunkers JP; Losert W; Sarkar S Biomaterials; 2021 Jul; 274():120812. PubMed ID: 33962216 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746 [TBL] [Abstract][Full Text] [Related]
12. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Kumar G; Tison CK; Chatterjee K; Pine PS; McDaniel JH; Salit ML; Young MF; Simon CG Biomaterials; 2011 Dec; 32(35):9188-96. PubMed ID: 21890197 [TBL] [Abstract][Full Text] [Related]
13. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
14. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
15. Electrospun poly(ε-caprolactone) nanofiber shish kebabs mimic mineralized bony surface features. Yu T; Gleeson SE; Li CY; Marcolongo M J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1141-1149. PubMed ID: 30261119 [TBL] [Abstract][Full Text] [Related]
16. Hierarchically ordered polymer nanofiber shish kebabs as a bone scaffold material. Chen X; Gleeson SE; Yu T; Khan N; Yucha RW; Marcolongo M; Li CY J Biomed Mater Res A; 2017 Jun; 105(6):1786-1798. PubMed ID: 28198135 [TBL] [Abstract][Full Text] [Related]
17. Silica/polycaprolactone nanofiber scaffold variants for human periosteal cell growth. Burton CW; DiFeo Childs R; McClellan P; Yu Q; Bundy J; Gao M; Evans E; Landis W J Biomed Mater Res A; 2019 Apr; 107(4):791-801. PubMed ID: 30575268 [TBL] [Abstract][Full Text] [Related]
18. Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells. Xue R; Qian Y; Li L; Yao G; Yang L; Sun Y Stem Cell Res Ther; 2017 Jun; 8(1):148. PubMed ID: 28646917 [TBL] [Abstract][Full Text] [Related]
19. Self-assembled nanofiber coatings for controlling cell responses. Barros RC; Gelens E; Bulten E; Tuin A; de Jong MR; Kuijer R; van Kooten TG J Biomed Mater Res A; 2017 Aug; 105(8):2252-2265. PubMed ID: 28513985 [TBL] [Abstract][Full Text] [Related]
20. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Pham QP; Sharma U; Mikos AG Biomacromolecules; 2006 Oct; 7(10):2796-805. PubMed ID: 17025355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]