These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26888664)

  • 1. A strain or electric field induced direct bandgap in ultrathin silicon film and its application in photovoltaics or photocatalysis.
    Cao T; Wang D; Geng DS; Liu LM; Zhao J
    Phys Chem Chem Phys; 2016 Mar; 18(10):7156-62. PubMed ID: 26888664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Single-Layer Technetium Dichalcogenides (TcX₂, X = S, Se) with Promising Applications in Photovoltaics and Photocatalysis.
    Jiao Y; Zhou L; Ma F; Gao G; Kou L; Bell J; Sanvito S; Du A
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5385-92. PubMed ID: 26859697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the electronic properties of bilayer group-IV monochalcogenides by stacking order, strain and an electric field: a computational study.
    Li ZY; Liu MY; Huang Y; Chen QY; Cao C; He Y
    Phys Chem Chem Phys; 2017 Dec; 20(1):214-220. PubMed ID: 29199745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain-induced indirect to direct bandgap transition in multilayer WSe2.
    Desai SB; Seol G; Kang JS; Fang H; Battaglia C; Kapadia R; Ager JW; Guo J; Javey A
    Nano Lett; 2014 Aug; 14(8):4592-7. PubMed ID: 24988370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable electronic and optical properties of monolayer silicane under tensile strain: a many-body study.
    Shu H; Wang S; Li Y; Yip J; Wang J
    J Chem Phys; 2014 Aug; 141(6):064707. PubMed ID: 25134590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect to direct band gap transition in ultra-thin silicon films.
    Lin L; Li Z; Feng J; Zhang Z
    Phys Chem Chem Phys; 2013 Apr; 15(16):6063-7. PubMed ID: 23493906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical, electronic and optical properties of a novel B
    Ren K; Shu H; Huo W; Cui Z; Yu J; Xu Y
    Phys Chem Chem Phys; 2021 Nov; 23(43):24915-24921. PubMed ID: 34726209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exceptional mechano-electronic properties in the HfN
    Mohanta MK; Fathima IS; De Sarkar A
    Phys Chem Chem Phys; 2020 Sep; 22(37):21275-21287. PubMed ID: 32935717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and quasi-direct band gap silicon allotropes with remarkable stability.
    He C; Zhang C; Li J; Peng X; Meng L; Tang C; Zhong J
    Phys Chem Chem Phys; 2016 Apr; 18(14):9682-6. PubMed ID: 26997330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically Tunable Bandgaps in Bilayer MoS₂.
    Chu T; Ilatikhameneh H; Klimeck G; Rahman R; Chen Z
    Nano Lett; 2015 Dec; 15(12):8000-7. PubMed ID: 26560813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional CaFCl: ultra-wide bandgap, strong interlayer quantum confinement, and n-type doping.
    Ye XJ; Zhu ZX; Meng L; Liu CS
    Phys Chem Chem Phys; 2020 Aug; 22(30):17213-17220. PubMed ID: 32677646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput calculation screening for new silicon allotropes with monoclinic symmetry.
    Fan Q; Wu J; Zhao Y; Song Y; Yun S
    IUCrJ; 2023 Jul; 10(Pt 4):464-474. PubMed ID: 37335767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric tuning of direct-indirect optical transitions in silicon.
    Noborisaka J; Nishiguchi K; Fujiwara A
    Sci Rep; 2014 Nov; 4():6950. PubMed ID: 25377598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two novel silicon phases with direct band gaps.
    Fan Q; Chai C; Wei Q; Yang Y
    Phys Chem Chem Phys; 2016 May; 18(18):12905-13. PubMed ID: 27104737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolayered H-Si-P semiconductors: structural stability, electronic structure, optical properties, and prospects for photocatalytic water splitting.
    Shu X; Lin J; Zhang H
    Phys Chem Chem Phys; 2021 Jun; 23(24):13594-13602. PubMed ID: 34114581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayered Silicon and Germanium Monopnictide Semiconductors: Excellent Stability, High Absorbance, and Strain Engineering of Electronic Properties.
    Cheng AQ; He Z; Zhao J; Zeng H; Chen RS
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5133-5139. PubMed ID: 29377662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional GeS with tunable electronic properties via external electric field and strain.
    Zhang S; Wang N; Liu S; Huang S; Zhou W; Cai B; Xie M; Yang Q; Chen X; Zeng H
    Nanotechnology; 2016 Jul; 27(27):274001. PubMed ID: 27232104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.