These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 26888776)

  • 1. RNAi-mediated plant protection against aphids.
    Yu XD; Liu ZC; Huang SL; Chen ZQ; Sun YW; Duan PF; Ma YZ; Xia LQ
    Pest Manag Sci; 2016 Jun; 72(6):1090-8. PubMed ID: 26888776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering plants for aphid resistance: current status and future perspectives.
    Yu X; Wang G; Huang S; Ma Y; Xia L
    Theor Appl Genet; 2014 Oct; 127(10):2065-83. PubMed ID: 25151153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAi-mediated crop protection against insects.
    Price DR; Gatehouse JA
    Trends Biotechnol; 2008 Jul; 26(7):393-400. PubMed ID: 18501983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aphid-proof plants: biotechnology-based approaches for aphid control.
    Will T; Vilcinskas A
    Adv Biochem Eng Biotechnol; 2013; 136():179-203. PubMed ID: 23728163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silencing a Myzus persicae Macrophage Inhibitory Factor by Plant-Mediated RNAi Induces Enhanced Aphid Mortality Coupled with Boosted RNAi Efficacy in Transgenic Potato Lines.
    Murtaza S; Tabassum B; Tariq M; Riaz S; Yousaf I; Jabbar B; Khan A; Samuel AO; Zameer M; Nasir IA
    Mol Biotechnol; 2022 Oct; 64(10):1152-1163. PubMed ID: 35460447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion dsRNA designs incorporating multiple target sequences can enhance the aphid control capacity of an RNAi-based strategy.
    Wang ZG; Qin CY; Chen Y; Yu XY; Chen RY; Niu J; Wang JJ
    Pest Manag Sci; 2024 Jun; 80(6):2689-2697. PubMed ID: 38327015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection.
    Zhang J; Khan SA; Heckel DG; Bock R
    Trends Biotechnol; 2017 Sep; 35(9):871-882. PubMed ID: 28822479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aphid resistance in Brassica crops: challenges, biotechnological progress and emerging possibilities.
    Bhatia V; Uniyal PL; Bhattacharya R
    Biotechnol Adv; 2011; 29(6):879-88. PubMed ID: 21802504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae.
    Mao J; Zeng F
    Transgenic Res; 2014 Feb; 23(1):145-52. PubMed ID: 23949691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistence and transgenerational effect of plant-mediated RNAi in aphids.
    Coleman AD; Wouters RH; Mugford ST; Hogenhout SA
    J Exp Bot; 2015 Feb; 66(2):541-8. PubMed ID: 25403918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants.
    Yu XD; Pickett J; Ma YZ; Bruce T; Napier J; Jones HD; Xia LQ
    J Integr Plant Biol; 2012 May; 54(5):282-99. PubMed ID: 22348813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.
    Zhang H; Li HC; Miao XX
    Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of a sap-sucking insect pest by plastid-mediated RNA interference.
    Dong Y; Wu M; Zhang Q; Fu J; Loiacono FV; Yang Y; Wang Z; Li S; Chang L; Bock R; Zhang J
    Mol Plant; 2022 Jul; 15(7):1176-1191. PubMed ID: 35619559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-derived artificial miRNA effectively reduced the proliferation of aphid (Aphidoidea) through spray-induced gene silencing.
    Wang Y; Li X; Zhu C; Yi S; Zhang Y; Hong Z
    Pest Manag Sci; 2024 Sep; 80(9):4322-4332. PubMed ID: 38647144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of aphid genes by dsRNA feeding from plants.
    Pitino M; Coleman AD; Maffei ME; Ridout CJ; Hogenhout SA
    PLoS One; 2011; 6(10):e25709. PubMed ID: 21998682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives.
    Niu J; Shen G; Christiaens O; Smagghe G; He L; Wang J
    Pest Manag Sci; 2018 Dec; 74(12):2680-2687. PubMed ID: 29749092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a cuticle protein gene as a potential RNAi target in aphids.
    Shang F; Ding BY; Ye C; Yang L; Chang TY; Xie J; Tang LD; Niu J; Wang JJ
    Pest Manag Sci; 2020 Jan; 76(1):134-140. PubMed ID: 31461217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants.
    Zhang M; Zhou Y; Wang H; Jones H; Gao Q; Wang D; Ma Y; Xia L
    BMC Genomics; 2013 Aug; 14():560. PubMed ID: 23957588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host-Delivered RNA Interference for Durable Pest Resistance in Plants: Advanced Methods, Challenges, and Applications.
    Saakre M; Jaiswal S; Rathinam M; Raman KV; Tilgam J; Paul K; Sreevathsa R; Pattanayak D
    Mol Biotechnol; 2024 Aug; 66(8):1786-1805. PubMed ID: 37523020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tribolium castaneum as a model for high-throughput RNAi screening.
    Knorr E; Bingsohn L; Kanost MR; Vilcinskas A
    Adv Biochem Eng Biotechnol; 2013; 136():163-78. PubMed ID: 23748349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.