BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 26888932)

  • 21. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.
    Paul BT; Bruce IC; Roberts LE
    Hear Res; 2017 Feb; 344():170-182. PubMed ID: 27888040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectrally specific temporal analyses of spike-train responses to complex sounds: A unifying framework.
    Parida S; Bharadwaj H; Heinz MG
    PLoS Comput Biol; 2021 Feb; 17(2):e1008155. PubMed ID: 33617548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling temporal information encoding by the population of fibers in the healthy and synaptopathic auditory nerve.
    Johannesen PT; Leclère T; Wijetillake A; Segovia-Martínez M; Lopez-Poveda EA
    Hear Res; 2022 Dec; 426():108621. PubMed ID: 36182814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Underlying neural mechanisms of degraded speech intelligibility following noise-induced hearing loss: The importance of distorted tonotopy.
    Parida S; Heinz MG
    Hear Res; 2022 Dec; 426():108586. PubMed ID: 35953357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Temporal Fine Structure of Background Noise Determines the Benefit of Bimodal Hearing for Recognizing Speech.
    Stronks HC; Briaire JJ; Frijns JHM
    J Assoc Res Otolaryngol; 2020 Dec; 21(6):527-544. PubMed ID: 33104927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores.
    Wu PZ; O'Malley JT; de Gruttola V; Liberman MC
    J Neurosci; 2021 May; 41(20):4439-4447. PubMed ID: 33883202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals.
    Müller M; Smolders JW; Ding-Pfennigdorff D; Klinke R
    Hear Res; 1996 Dec; 102(1-2):133-54. PubMed ID: 8951458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal combination of neural temporal envelope and fine structure cues to explain speech identification in background noise.
    Moon IJ; Won JH; Park MH; Ives DT; Nie K; Heinz MG; Lorenzi C; Rubinstein JT
    J Neurosci; 2014 Sep; 34(36):12145-54. PubMed ID: 25186758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics.
    Temchin AN; Ruggero MA
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):297-318. PubMed ID: 19921334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural correlates of sensorineural hearing loss.
    Salvi RJ; Henderson D; Hamernik R; Ahroon WA
    Ear Hear; 1983; 4(3):115-29. PubMed ID: 6345246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers.
    Recio-Spinoso A; Temchin AN; van Dijk P; Fan YH; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3615-34. PubMed ID: 15659532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural and Hidden Hearing Loss.
    Carney LH
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):331-352. PubMed ID: 29744729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.
    Paraouty N; Stasiak A; Lorenzi C; Varnet L; Winter IM
    J Neurosci; 2018 Apr; 38(17):4123-4137. PubMed ID: 29599389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas.
    Henry KS; Kale S; Scheidt RE; Heinz MG
    Hear Res; 2011 Oct; 280(1-2):236-44. PubMed ID: 21699970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictions of Speech Chimaera Intelligibility Using Auditory Nerve Mean-Rate and Spike-Timing Neural Cues.
    Wirtzfeld MR; Ibrahim RA; Bruce IC
    J Assoc Res Otolaryngol; 2017 Oct; 18(5):687-710. PubMed ID: 28748487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suprathreshold auditory processing and speech perception in noise: hearing-impaired and normal-hearing listeners.
    Summers V; Makashay MJ; Theodoroff SM; Leek MR
    J Am Acad Audiol; 2013 Apr; 24(4):274-92. PubMed ID: 23636209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis.
    Heeringa AN; van Dijk P
    Hear Res; 2016 Jan; 331():47-56. PubMed ID: 26523371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.