These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes. Bhaskaranand M; Ramachandra C; Bhat S; Cuadros J; Nittala MG; Sadda SR; Solanki K Diabetes Technol Ther; 2019 Nov; 21(11):635-643. PubMed ID: 31335200 [No Abstract] [Full Text] [Related]
4. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284 [TBL] [Abstract][Full Text] [Related]
5. Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis. Hansen AB; Hartvig NV; Jensen MS; Borch-Johnsen K; Lund-Andersen H; Larsen M Acta Ophthalmol Scand; 2004 Dec; 82(6):666-72. PubMed ID: 15606461 [TBL] [Abstract][Full Text] [Related]
6. Automated Identification of Diabetic Retinopathy Using Deep Learning. Gargeya R; Leng T Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists' workload. Soto-Pedre E; Navea A; Millan S; Hernaez-Ortega MC; Morales J; Desco MC; Pérez P Acta Ophthalmol; 2015 Feb; 93(1):e52-6. PubMed ID: 24975456 [TBL] [Abstract][Full Text] [Related]
8. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. van der Heijden AA; Abramoff MD; Verbraak F; van Hecke MV; Liem A; Nijpels G Acta Ophthalmol; 2018 Feb; 96(1):63-68. PubMed ID: 29178249 [TBL] [Abstract][Full Text] [Related]
10. Automated diabetic retinopathy imaging in Indian eyes: a pilot study. Roy R; Lobo A; Pal BP; Oliveira CM; Raman R; Sharma T Indian J Ophthalmol; 2014 Dec; 62(12):1121-4. PubMed ID: 25579354 [TBL] [Abstract][Full Text] [Related]
11. Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images. Wang K; Jayadev C; Nittala MG; Velaga SB; Ramachandra CA; Bhaskaranand M; Bhat S; Solanki K; Sadda SR Acta Ophthalmol; 2018 Mar; 96(2):e168-e173. PubMed ID: 28926199 [TBL] [Abstract][Full Text] [Related]
12. Computer-assisted microaneurysm turnover in the early stages of diabetic retinopathy. Bernardes R; Nunes S; Pereira I; Torrent T; Rosa A; Coelho D; Cunha-Vaz J Ophthalmologica; 2009; 223(5):284-91. PubMed ID: 19372722 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404 [TBL] [Abstract][Full Text] [Related]
14. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Islam MM; Yang HC; Poly TN; Jian WS; Jack Li YC Comput Methods Programs Biomed; 2020 Jul; 191():105320. PubMed ID: 32088490 [TBL] [Abstract][Full Text] [Related]
15. Automated detection of diabetic retinopathy: results of a screening study. Bouhaimed M; Gibbins R; Owens D Diabetes Technol Ther; 2008 Apr; 10(2):142-8. PubMed ID: 18260777 [TBL] [Abstract][Full Text] [Related]
16. Automated multi-lesion detection for referable diabetic retinopathy in indigenous health care. Pires R; Carvalho T; Spurling G; Goldenstein S; Wainer J; Luckie A; Jelinek HF; Rocha A PLoS One; 2015; 10(6):e0127664. PubMed ID: 26035836 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning-Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance. Nielsen KB; Lautrup ML; Andersen JKH; Savarimuthu TR; Grauslund J Ophthalmol Retina; 2019 Apr; 3(4):294-304. PubMed ID: 31014679 [TBL] [Abstract][Full Text] [Related]
18. A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images. Rosas-Romero R; Martínez-Carballido J; Hernández-Capistrán J; Uribe-Valencia LJ Comput Med Imaging Graph; 2015 Sep; 44():41-53. PubMed ID: 26245720 [TBL] [Abstract][Full Text] [Related]
19. Automatic detection of microaneurysms in diabetic retinopathy fundus images using the L*a*b color space. Navarro PJ; Alonso D; Stathis K J Opt Soc Am A Opt Image Sci Vis; 2016 Jan; 33(1):74-83. PubMed ID: 26831588 [TBL] [Abstract][Full Text] [Related]
20. Automated microaneurysm detection method based on Eigenvalue analysis using Hessian matrix in retinal fundus images. Inoue T; Hatanaka Y; Okumura S; Muramatsu C; Fujita H Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5873-6. PubMed ID: 24111075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]