BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26889574)

  • 1. Development of CNC prototype for the characterization of the nanoparticle release during physical manipulation of nanocomposites.
    Gendre L; Marchante V; Abhyankar HA; Blackburn K; Temple C; Brighton JL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(6):495-501. PubMed ID: 26889574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-object Release During Machining of Polymer-Based Nanocomposites Depends on Process Factors and the Type of Nanofiller.
    Ding Y; Wohlleben W; Boland M; Vilsmeier K; Riediker M
    Ann Work Expo Health; 2017 Nov; 61(9):1132-1144. PubMed ID: 29136418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing.
    Gomez V; Levin M; Saber AT; Irusta S; Dal Maso M; Hanoi R; Santamaria J; Jensen KA; Wallin H; Koponen IK
    Ann Occup Hyg; 2014 Oct; 58(8):983-94. PubMed ID: 25030708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities.
    Kreider ML; Cyrs WD; Tosiano MA; Panko JM
    Ann Occup Hyg; 2015 Nov; 59(9):1122-34. PubMed ID: 26209596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Release of Manufactured Nano Objects During Sanding of Nano-Coated Wood Surfaces.
    Fransman W; Bekker C; Tromp P; Duis WB
    Ann Occup Hyg; 2016 Aug; 60(7):875-84. PubMed ID: 27234377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of techniques and studies characterizing the release of carbon nanotubes from nanocomposites: Implications for exposure and human health risk assessment.
    Kovochich M; Fung CD; Avanasi R; Madl AK
    J Expo Sci Environ Epidemiol; 2018 May; 28(3):203-215. PubMed ID: 28561036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic contamination of settled house dust, a review for exposure assessment purposes.
    Mercier F; Glorennec P; Thomas O; Le Bot B
    Environ Sci Technol; 2011 Aug; 45(16):6716-27. PubMed ID: 21667945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--part A.
    Methner M; Hodson L; Geraci C
    J Occup Environ Hyg; 2010 Mar; 7(3):127-32. PubMed ID: 20017054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of carbon nanoparticles of different size and shape from nanocomposite poly(lactic) acid film into food simulants.
    Velichkova H; Kotsilkov S; Ivanov E; Kotsilkova R; Gyoshev S; Stoimenov N; Vitanov NK
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):1072-1085. PubMed ID: 28338429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Composition of the dust for the assessment of the exposure to the population in the areas of influence of industrial emissions of stationary sources].
    Zaĭtseva NV; Maĭ IV; Zagorodnov SIu
    Gig Sanit; 2013; (5):19-23. PubMed ID: 24340903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EU contemplates first-ever limit on PM2.5.
    Burke M
    Environ Sci Technol; 2006 Jan; 40(1):11. PubMed ID: 16433326
    [No Abstract]   [Full Text] [Related]  

  • 13. Assessment of elemental composition and properties of copper smelter-affected dust and its nano- and micron size fractions.
    Ermolin MS; Fedotov PS; Ivaneev AI; Karandashev VK; Burmistrov AA; Tatsy YG
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):23781-23790. PubMed ID: 27623857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JEM spotlight: Environmental monitoring of airborne nanoparticles.
    Morawska L; Wang H; Ristovski Z; Jayaratne ER; Johnson G; Cheung HC; Ling X; He C
    J Environ Monit; 2009 Oct; 11(10):1758-73. PubMed ID: 19809699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental examination of factors that affect dust generation.
    Plinke MA; Leith D; Holstein DB; Boundy MG
    Am Ind Hyg Assoc J; 1991 Dec; 52(12):521-8. PubMed ID: 1781432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary evaluation of risks related to waste incineration of polymer nanocomposites.
    Roes L; Patel MK; Worrell E; Ludwig C
    Sci Total Environ; 2012 Feb; 417-418():76-86. PubMed ID: 22265599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles.
    Carpentieri M; Kumar P; Robins A
    Environ Pollut; 2011 Mar; 159(3):685-93. PubMed ID: 21193254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites.
    Bello D; Wardle BL; Zhang J; Yamamoto N; Santeufemio C; Hallock M; Virji MA
    Int J Occup Environ Health; 2010; 16(4):434-50. PubMed ID: 21222387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine and Ultrafine Aerosol in Ostrava Ambient Air.
    Lach K; Klouda K; Mička V; Hellebrandová L
    Cent Eur J Public Health; 2016 Dec; 24 Suppl():S51-S54. PubMed ID: 28160538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites.
    Thompson D; Chen SC; Wang J; Pui DY
    Ann Occup Hyg; 2015 Nov; 59(9):1135-51. PubMed ID: 26209597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.