BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26889790)

  • 1. Use of the SPARC software program to calculate hydrolysis rate constants for the polymeric brominated flame retardants BC-58 and FR-1025.
    Rayne S; Forest K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(6):509-13. PubMed ID: 26889790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of brominated and organophosphorus flame retardants.
    Waaijers SL; Parsons JR
    Curr Opin Biotechnol; 2016 Apr; 38():14-23. PubMed ID: 26748263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of new generation flame retardants to Daphnia magna.
    Waaijers SL; Hartmann J; Soeter AM; Helmus R; Kools SA; de Voogt P; Admiraal W; Parsons JR; Kraak MH
    Sci Total Environ; 2013 Oct; 463-464():1042-8. PubMed ID: 23886749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free and bound polybrominated diphenyl ethers and tetrabromobisphenol A in freshwater sediments.
    Luo XJ; Zhang XL; Chen SJ; Mai BX
    Mar Pollut Bull; 2010 May; 60(5):718-24. PubMed ID: 20042203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of brominated polymeric flame retardants and effects of generated decomposition products.
    Koch C; Sures B
    Chemosphere; 2019 Jul; 227():329-333. PubMed ID: 30999173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral- and Base-Catalyzed Hydrolysis of Organophosphate Flame Retardants: Potential Major Fate-Controlling Sink in Soil and Aquatic Environments.
    Fang Y; Kim E; Strathmann TJ
    Environ Sci Technol; 2018 Feb; 52(4):1997-2006. PubMed ID: 29333858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008.
    Kajiwara N; Noma Y; Takigami H
    J Hazard Mater; 2011 Sep; 192(3):1250-9. PubMed ID: 21783321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of flame retardant tetrabromobisphenol a by aqueous permanganate: reaction kinetics, brominated products, and pathways.
    Pang SY; Jiang J; Gao Y; Zhou Y; Huangfu X; Liu Y; Ma J
    Environ Sci Technol; 2014; 48(1):615-23. PubMed ID: 24295083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ generation of fluorescent silica nano-aggregates of silatranyl appended furfural Schiff base and its application to the spectrofluorimetric analysis of phenolic brominated flame retardants in aqueous medium.
    Gupta H; Singh R; Kaur V
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121338. PubMed ID: 35567821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric evidence of interaction of brominated flame retardants with membrane model.
    Librando V; Accolla ML; Minniti Z; Pappalardo M; Castelli F; Cascio O; Sarpietro MG
    Environ Toxicol Pharmacol; 2015 May; 39(3):1154-60. PubMed ID: 25929984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures.
    Ortuño N; Moltó J; Conesa JA; Font R
    Environ Pollut; 2014 Aug; 191():31-7. PubMed ID: 24792882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release.
    Alaee M; Arias P; Sjödin A; Bergman A
    Environ Int; 2003 Sep; 29(6):683-9. PubMed ID: 12850087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of Polymeric Brominated Flame Retardants: Development of an Analytical Approach Using PolyFR and UV Irradiation.
    Koch C; Dundua A; Aragon-Gomez J; Nachev M; Stephan S; Willach S; Ulbricht M; Schmitz OJ; Schmidt TC; Sures B
    Environ Sci Technol; 2016 Dec; 50(23):12912-12920. PubMed ID: 27806572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic co-metabolic biodegradation of tetrabromobisphenol A using a bioelectrochemical system.
    Fan M; Zhou N; Li P; Chen L; Chen Y; Shen S; Zhu S
    J Hazard Mater; 2017 Jan; 321():791-800. PubMed ID: 27745959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems.
    Sun F; Kolvenbach BA; Nastold P; Jiang B; Ji R; Corvini PF
    Environ Sci Technol; 2014 Dec; 48(24):14291-9. PubMed ID: 25402269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecotoxicity of a brominated flame retardant (tetrabromobisphenol A) and its derivatives to aquatic organisms.
    Debenest T; Gagné F; Petit AN; André C; Kohli M; Blaise C
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Nov; 152(4):407-12. PubMed ID: 20601118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brominated flame retardants in Korean river sediments, including changes in polybrominated diphenyl ether concentrations between 2006 and 2009.
    Lee IS; Kang HH; Kim UJ; Oh JE
    Chemosphere; 2015 May; 126():18-24. PubMed ID: 25655576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of the flame retardant tetrabromobisphenol-A (TBBPA) by freshwater microalgae.
    Peng FQ; Ying GG; Yang B; Liu YS; Lai HJ; Zhou GJ; Chen J; Zhao JL
    Environ Toxicol Chem; 2014 Aug; 33(8):1705-11. PubMed ID: 24687216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecotoxicological characterization of possible degradation products of the polymeric flame retardant "Polymeric FR" using algae and Daphnia OECD tests.
    Koch C; Sures B
    Sci Total Environ; 2019 Mar; 656():101-107. PubMed ID: 30504012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of the Polymeric Brominated Flame Retardant "Polymeric FR" by Heat and UV Exposure.
    Koch C; Nachev M; Klein J; Köster D; Schmitz OJ; Schmidt TC; Sures B
    Environ Sci Technol; 2019 Feb; 53(3):1453-1462. PubMed ID: 30623663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.