These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 26889810)

  • 1. Dopamine Does Double Duty in Motivating Cognitive Effort.
    Westbrook A; Braver TS
    Neuron; 2016 Feb; 89(4):695-710. PubMed ID: 26889810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memory and cognitive control circuits in mathematical cognition and learning.
    Menon V
    Prog Brain Res; 2016; 227():159-86. PubMed ID: 27339012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine modulates neural networks involved in effort-based decision-making.
    Assadi SM; Yücel M; Pantelis C
    Neurosci Biobehav Rev; 2009 Mar; 33(3):383-93. PubMed ID: 19046987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbitofrontal cortex and its contribution to decision-making.
    Wallis JD
    Annu Rev Neurosci; 2007; 30():31-56. PubMed ID: 17417936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology.
    Salamone JD; Yohn SE; López-Cruz L; San Miguel N; Correa M
    Brain; 2016 May; 139(Pt 5):1325-47. PubMed ID: 27189581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.
    Rogers RD
    Neuropsychopharmacology; 2011 Jan; 36(1):114-32. PubMed ID: 20881944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Biologically Plausible Action Selection System for Cognitive Architectures: Implications of Basal Ganglia Anatomy for Learning and Decision-Making Models.
    Stocco A
    Cogn Sci; 2018 Mar; 42(2):457-490. PubMed ID: 28585747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesolimbic dopamine signals the value of work.
    Hamid AA; Pettibone JR; Mabrouk OS; Hetrick VL; Schmidt R; Vander Weele CM; Kennedy RT; Aragona BJ; Berke JD
    Nat Neurosci; 2016 Jan; 19(1):117-26. PubMed ID: 26595651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Reward and Aversion Shape Motivation and Decision Making: A Computational Account.
    Verharen JPH; Adan RAH; Vanderschuren LJMJ
    Neuroscientist; 2020 Feb; 26(1):87-99. PubMed ID: 30866712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility.
    Goschke T; Bolte A
    Neuropsychologia; 2014 Sep; 62():403-23. PubMed ID: 25068705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of dopamine in the motivational and cognitive control of behavior.
    Cools R
    Neuroscientist; 2008 Aug; 14(4):381-95. PubMed ID: 18660464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The costs and benefits of brain dopamine for cognitive control.
    Cools R
    Wiley Interdiscip Rev Cogn Sci; 2016 Sep; 7(5):317-29. PubMed ID: 27507774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emotion-based decision-making in healthy subjects: short-term effects of reducing dopamine levels.
    Sevy S; Hassoun Y; Bechara A; Yechiam E; Napolitano B; Burdick K; Delman H; Malhotra A
    Psychopharmacology (Berl); 2006 Oct; 188(2):228-35. PubMed ID: 16915385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopaminergic and cholinergic modulations of visual-spatial attention and working memory: insights from molecular genetic research and implications for adult cognitive development.
    Störmer VS; Passow S; Biesenack J; Li SC
    Dev Psychol; 2012 May; 48(3):875-89. PubMed ID: 22103306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for dopamine in the behavioral functions of the prefrontal corticostriatal system: implications for mental disorders and psychotropic drug action.
    Jentsch JD; Roth RH; Taylor JR
    Prog Brain Res; 2000; 126():433-53. PubMed ID: 11105661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reward representations and reward-related learning in the human brain: insights from neuroimaging.
    O'Doherty JP
    Curr Opin Neurobiol; 2004 Dec; 14(6):769-76. PubMed ID: 15582382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Willing to Think Hard? The Subjective Value of Cognitive Effort in Children.
    Chevalier N
    Child Dev; 2018 Jul; 89(4):1283-1295. PubMed ID: 28397991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine and the motivation of cognitive control.
    Cools R; Froböse M; Aarts E; Hofmans L
    Handb Clin Neurol; 2019; 163():123-143. PubMed ID: 31590726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are the carrot and the stick the two sides of same coin? A neural examination of approach/avoidance motivation during cognitive performance.
    Belayachi S; Majerus S; Gendolla G; Salmon E; Peters F; Van der Linden M
    Behav Brain Res; 2015 Oct; 293():217-26. PubMed ID: 26213335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More attention must be paid: the neurobiology of attentional effort.
    Sarter M; Gehring WJ; Kozak R
    Brain Res Rev; 2006 Aug; 51(2):145-60. PubMed ID: 16530842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.