BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26889929)

  • 41. Resonant and nonresonant multiphoton ionization processes in the mass spectrometry of explosives.
    Hamachi A; Okuno T; Imasaka T; Kida Y; Imasaka T
    Anal Chem; 2015 Mar; 87(5):3027-31. PubMed ID: 25622138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct real-time detection of vapors from explosive compounds.
    Ewing RG; Clowers BH; Atkinson DA
    Anal Chem; 2013 Nov; 85(22):10977-83. PubMed ID: 24090362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface.
    Gao L; Cooks RG; Ouyang Z
    Anal Chem; 2008 Jun; 80(11):4026-32. PubMed ID: 18461971
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Test method for vapor collection and ion mobility detection of explosives with low vapor pressure.
    Son CE; Choi HR; Choi SS
    Rapid Commun Mass Spectrom; 2023 Dec; 37(23):e9645. PubMed ID: 37942691
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electronic tongue for nitro and peroxide explosive sensing.
    González-Calabuig A; Cetó X; Del Valle M
    Talanta; 2016 Jun; 153():340-6. PubMed ID: 27130125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct mass spectrometric detection of trace explosives in soil samples.
    Ma L; Xin B; Chen Y
    Analyst; 2012 Apr; 137(7):1730-6. PubMed ID: 22363928
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neutral desorption using a sealed enclosure to sample explosives on human skin for rapid detection by EESI-MS.
    Chen H; Hu B; Hu Y; Huan Y; Zhou Z; Qiao X
    J Am Soc Mass Spectrom; 2009 Apr; 20(4):719-22. PubMed ID: 19196523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source.
    Usmanov DT; Hiraoka K; Wada H; Matsumura M; Sanada-Morimura S; Nonami H; Yamabe S
    Anal Chim Acta; 2017 Jun; 973():59-67. PubMed ID: 28502428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of double cylindrical dielectric barrier discharge ion source.
    Hiraoka K; Ninomiya S; Chen LC; Iwama T; Mandal MK; Suzuki H; Ariyada O; Furuya H; Takekawa K
    Analyst; 2011 Mar; 136(6):1210-5. PubMed ID: 21240423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid detection of drugs in biofluids using atmospheric pressure chemi/chemical ionization mass spectrometry.
    Chen LC; Hashimoto Y; Furuya H; Takekawa K; Kubota T; Hiraoka K
    Rapid Commun Mass Spectrom; 2009 Feb; 23(3):333-9. PubMed ID: 19125420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.
    Tomlinson-Phillips J; Wooten A; Kozole J; Deline J; Beresford P; Stairs J
    Talanta; 2014 Sep; 127():152-62. PubMed ID: 24913870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hollow Cathode Discharge Ionization Mass Spectrometry: Detection, Quantification and Gas Phase Ion-Molecule Reactions of Explosives and Related Compounds.
    Hong H; Habib A; Bi L; Qais DS; Wen L
    Crit Rev Anal Chem; 2024 Jul; 54(1):148-174. PubMed ID: 35467991
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arc-Induced Nitrate Reagent Ion for Analysis of Trace Explosives on Surfaces Using Atmospheric Pressure Arc Desorption/Ionization Mass Spectrometry.
    Gao Y; Chu F; Chen W; Wang X; Pan Y
    Anal Chem; 2022 Apr; 94(14):5463-5468. PubMed ID: 35357149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant tissue analysis for explosive compounds in phytoremediation and phytoforensics.
    Karnjanapiboonwong A; Mu R; Yuan Y; Shi H; Ma Y; Burken JG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(14):2219-29. PubMed ID: 22934993
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Precise determination of nonlinear function of ion mobility for explosives and drugs at high electric fields for microchip FAIMS.
    Guo D; Wang Y; Li L; Wang X; Luo J
    J Mass Spectrom; 2015 Jan; 50(1):198-205. PubMed ID: 25601693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of ambient sampling chemi/chemical ion source with dielectric barrier discharge.
    Chen LC; Yu Z; Furuya H; Hashimoto Y; Takekawa K; Suzuki H; Ariyada O; Hiraoka K
    J Mass Spectrom; 2010 Aug; 45(8):861-9. PubMed ID: 20648691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of explosives on skin using ambient ionization mass spectrometry.
    Justes DR; Talaty N; Cotte-Rodriguez I; Cooks RG
    Chem Commun (Camb); 2007 Jun; (21):2142-4. PubMed ID: 17520116
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.