BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26889944)

  • 1. Protection or resection: BOD1L as a novel replication fork protection factor.
    Higgs MR; Stewart GS
    Nucleus; 2016; 7(1):34-40. PubMed ID: 26889944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks.
    Higgs MR; Reynolds JJ; Winczura A; Blackford AN; Borel V; Miller ES; Zlatanou A; Nieminuszczy J; Ryan EL; Davies NJ; Stankovic T; Boulton SJ; Niedzwiedz W; Stewart GS
    Mol Cell; 2015 Aug; 59(3):462-77. PubMed ID: 26166705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2.
    Higgs MR; Sato K; Reynolds JJ; Begum S; Bayley R; Goula A; Vernet A; Paquin KL; Skalnik DG; Kobayashi W; Takata M; Howlett NG; Kurumizaka H; Kimura H; Stewart GS
    Mol Cell; 2018 Jul; 71(1):25-41.e6. PubMed ID: 29937342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DCAF14 promotes stalled fork stability to maintain genome integrity.
    Townsend A; Lora G; Engel J; Tirado-Class N; Dungrawala H
    Cell Rep; 2021 Jan; 34(4):108669. PubMed ID: 33503431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress.
    Przetocka S; Porro A; Bolck HA; Walker C; Lezaja A; Trenner A; von Aesch C; Himmels SF; D'Andrea AD; Ceccaldi R; Altmeyer M; Sartori AA
    Mol Cell; 2018 Nov; 72(3):568-582.e6. PubMed ID: 30344097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WEE1 kinase protects the stability of stalled DNA replication forks by limiting CDK2 activity.
    Elbæk CR; Petrosius V; Benada J; Erichsen L; Damgaard RB; Sørensen CS
    Cell Rep; 2022 Jan; 38(3):110261. PubMed ID: 35045293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fork in the road: Where homologous recombination and stalled replication fork protection part ways.
    Tye S; Ronson GE; Morris JR
    Semin Cell Dev Biol; 2021 May; 113():14-26. PubMed ID: 32653304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress.
    Leuzzi G; Marabitti V; Pichierri P; Franchitto A
    EMBO J; 2016 Jul; 35(13):1437-51. PubMed ID: 27242363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RADX Modulates RAD51 Activity to Control Replication Fork Protection.
    Bhat KP; Krishnamoorthy A; Dungrawala H; Garcin EB; Modesti M; Cortez D
    Cell Rep; 2018 Jul; 24(3):538-545. PubMed ID: 30021152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in understanding DNA processing and protection at stalled replication forks.
    Rickman K; Smogorzewska A
    J Cell Biol; 2019 Apr; 218(4):1096-1107. PubMed ID: 30670471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safeguarding genome stability: RASSF1A tumor suppressor regulates BRCA2 at stalled forks.
    Pefani DE; O'Neill E
    Cell Cycle; 2015; 14(11):1624-30. PubMed ID: 25927241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SDE2 integrates into the TIMELESS-TIPIN complex to protect stalled replication forks.
    Rageul J; Park JJ; Zeng PP; Lee EA; Yang J; Hwang S; Lo N; Weinheimer AS; Schärer OD; Yeo JE; Kim H
    Nat Commun; 2020 Oct; 11(1):5495. PubMed ID: 33127907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The BRCA2 and CDKN1A-interacting protein (BCCIP) stabilizes stalled replication forks and prevents degradation of nascent DNA.
    Singh B; Roy Chowdhury S; Mansuri MS; Pillai SJ; Mehrotra S
    FEBS Lett; 2022 Aug; 596(16):2041-2055. PubMed ID: 35592921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart.
    Somyajit K; Saxena S; Babu S; Mishra A; Nagaraju G
    Nucleic Acids Res; 2015 Nov; 43(20):9835-55. PubMed ID: 26354865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability.
    Xu S; Wu X; Wu L; Castillo A; Liu J; Atkinson E; Paul A; Su D; Schlacher K; Komatsu Y; You MJ; Wang B
    Genes Dev; 2017 Jul; 31(14):1469-1482. PubMed ID: 28860160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lamin A/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability.
    Graziano S; Coll-Bonfill N; Teodoro-Castro B; Kuppa S; Jackson J; Shashkova E; Mahajan U; Vindigni A; Antony E; Gonzalo S
    J Biol Chem; 2021 Nov; 297(5):101301. PubMed ID: 34648766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The emerging determinants of replication fork stability.
    Thakar T; Moldovan GL
    Nucleic Acids Res; 2021 Jul; 49(13):7224-7238. PubMed ID: 33978751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RIF1 promotes replication fork protection and efficient restart to maintain genome stability.
    Mukherjee C; Tripathi V; Manolika EM; Heijink AM; Ricci G; Merzouk S; de Boer HR; Demmers J; van Vugt MATM; Ray Chaudhuri A
    Nat Commun; 2019 Jul; 10(1):3287. PubMed ID: 31337767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity.
    Kottemann MC; Conti BA; Lach FP; Smogorzewska A
    Mol Cell; 2018 Jan; 69(1):24-35.e5. PubMed ID: 29290612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.