These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26890027)

  • 1. From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices.
    Zhou Z; Zhao Z; Yu Y; Ai B; Möhwald H; Chiechi RC; Yang JK; Zhang G
    Adv Mater; 2016 Apr; 28(15):2956-63. PubMed ID: 26890027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing.
    Gu P; Zhou Z; Zhao Z; Möhwald H; Li C; Chiechi RC; Shi Z; Zhang G
    Nanoscale; 2019 Feb; 11(8):3583-3590. PubMed ID: 30729970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Chiral Metamaterials with Sub-10 nm Nanogaps.
    Zhang W; Ai B; Gu P; Guan Y; Wang Z; Xiao Z; Zhang G
    ACS Nano; 2021 Nov; 15(11):17657-17667. PubMed ID: 34734713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level.
    Luo S; Mancini A; Berté R; Hoff BH; Maier SA; de Mello JC
    Adv Mater; 2021 May; 33(20):e2100491. PubMed ID: 33939199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
    Cai H; Meng Q; Zhao H; Li M; Dai Y; Lin Y; Ding H; Pan N; Tian Y; Luo Y; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20189-20195. PubMed ID: 29799180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition.
    Naitoh Y; Ohata T; Matsushita R; Okawa E; Horikawa M; Oyama M; Mukaida M; Wang DF; Kiguchi M; Tsukagoshi K; Ishida T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12869-75. PubMed ID: 24274822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Area Nanogap-Controlled 3D Nanoarchitectures Fabricated
    Zhao ZJ; Ahn J; Hwang SH; Ko J; Jeong Y; Bok M; Kang HJ; Choi J; Jeon S; Park I; Jeong JH
    ACS Nano; 2021 Jan; 15(1):503-514. PubMed ID: 33439612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering.
    Le-The H; Lozeman JJA; Lafuente M; Muñoz P; Bomer JG; Duy-Tong H; Berenschot E; van den Berg A; Tas NR; Odijk M; Eijkel JCT
    Nanoscale; 2019 Jul; 11(25):12152-12160. PubMed ID: 31194202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy.
    Luo S; Mancini A; Wang F; Liu J; Maier SA; de Mello JC
    ACS Nano; 2022 May; 16(5):7438-7447. PubMed ID: 35381178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic layer deposition assisted fabrication of large-scale metal nanogaps for surface enhanced Raman scattering.
    Cheng T; Zhu Z; Wang X; Zhu L; Li A; Jiang L; Cao Y
    Nanotechnology; 2023 Apr; 34(26):. PubMed ID: 36996801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large area metal nanowire arrays with tunable sub-20 nm nanogaps.
    Le Thi Ngoc L; Jin M; Wiedemair J; van den Berg A; Carlen ET
    ACS Nano; 2013 Jun; 7(6):5223-34. PubMed ID: 23647306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directly addressable sub-3 nm gold nanogaps fabricated by Nanoskiving using self-assembled monolayers as templates.
    Pourhossein P; Chiechi RC
    ACS Nano; 2012 Jun; 6(6):5566-73. PubMed ID: 22577867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertically oriented sub-10-nm plasmonic nanogap arrays.
    Im H; Bantz KC; Lindquist NC; Haynes CL; Oh SH
    Nano Lett; 2010 Jun; 10(6):2231-6. PubMed ID: 20499849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas.
    Duan H; Hu H; Hui HK; Shen Z; Yang JK
    Nanotechnology; 2013 May; 24(18):185301. PubMed ID: 23579281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps.
    Wang Y; Wang H; Wang Y; Shen Y; Xu S; Xu W
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15623-9. PubMed ID: 27250862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocracking and metallization doubly defined large-scale 3D plasmonic sub-10 nm-gap arrays as extremely sensitive SERS substrates.
    Pan R; Yang Y; Wang Y; Li S; Liu Z; Su Y; Quan B; Li Y; Gu C; Li J
    Nanoscale; 2018 Feb; 10(7):3171-3180. PubMed ID: 29364303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates.
    Cai H; Wu Y; Dai Y; Pan N; Tian Y; Luo Y; Wang X
    Opt Express; 2016 Sep; 24(18):20808-15. PubMed ID: 27607684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.