These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26890151)

  • 1. Calorimetric and spectroscopic studies on solvation energetics for H₂ storage in the CO₂/HCOOH system.
    Fink C; Katsyuba S; Laurenczy G
    Phys Chem Chem Phys; 2016 Apr; 18(16):10764-73. PubMed ID: 26890151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media.
    Moret S; Dyson PJ; Laurenczy G
    Nat Commun; 2014 Jun; 5():4017. PubMed ID: 24886955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct, in situ determination of pH and solute concentrations in formic acid dehydrogenation and CO(2) hydrogenation in pressurised aqueous solutions using (1)H and (13)C NMR spectroscopy.
    Moret S; Dyson PJ; Laurenczy G
    Dalton Trans; 2013 Apr; 42(13):4353-6. PubMed ID: 23412518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature.
    Sordakis K; Tsurusaki A; Iguchi M; Kawanami H; Himeda Y; Laurenczy G
    Chemistry; 2016 Oct; 22(44):15605-15608. PubMed ID: 27582027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Developments in Reversible CO
    Kushwaha S; Parthiban J; Singh SK
    ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water.
    Rohmann K; Kothe J; Haenel MW; Englert U; Hölscher M; Leitner W
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8966-9. PubMed ID: 27356513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium.
    Matubayasi N; Nakahara M
    J Chem Phys; 2005 Feb; 122(7):074509. PubMed ID: 15743256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.
    Fujita E; Muckerman JT; Himeda Y
    Biochim Biophys Acta; 2013; 1827(8-9):1031-8. PubMed ID: 23174332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.
    Fink C; Montandon-Clerc M; Laurenczy G
    Chimia (Aarau); 2015; 69(12):746-752. PubMed ID: 26842324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formic acid stability in different solvents by DFT calculations.
    da Silva Alvim R; Esio Bresciani A; Alves RMB
    J Mol Model; 2024 Feb; 30(3):67. PubMed ID: 38345658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydride Pinning Pathway in the Hydrogenation of CO
    Sarma PJ; Baruah SD; Logsdail A; Deka RC
    Chemphyschem; 2019 Mar; 20(5):680-686. PubMed ID: 30648792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage.
    Himeda Y; Miyazawa S; Hirose T
    ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogenation of CO
    Zhang L; Pu M; Lei M
    Dalton Trans; 2021 Jun; 50(21):7348-7355. PubMed ID: 33960356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pd
    Lee WJ; Hwang YJ; Kim J; Jeong H; Yoon CW
    Chemphyschem; 2019 May; 20(10):1382-1391. PubMed ID: 30706621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared characterization of the HCOOH···CO2 complexes in solid argon: stabilization of the higher-energy conformer of formic acid.
    Tsuge M; Marushkevich K; Räsänen M; Khriachtchev L
    J Phys Chem A; 2012 Jun; 116(22):5305-11. PubMed ID: 22563718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.