These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26890263)

  • 1. Hybridizing Poly(ε-caprolactone) and Plasmonic Titanium Nitride Nanoparticles for Broadband Photoresponsive Shape Memory Films.
    Ishii S; Uto K; Niiyama E; Ebara M; Nagao T
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5634-40. PubMed ID: 26890263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast IR-Actuated Shape-Memory Polymers Using in Situ Silver Nanoparticle-Grafted Cellulose Nanocrystals.
    Toncheva A; Khelifa F; Paint Y; Voué M; Lambert P; Dubois P; Raquez JM
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29933-29942. PubMed ID: 30092638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Titanium Nitride Nano-enabled Membranes with High Structural Stability for Efficient Photothermal Desalination.
    Farid MU; Kharraz JA; An AK
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3805-3815. PubMed ID: 33444505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH).
    Rodriguez ED; Luo X; Mather PT
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):152-61. PubMed ID: 21250636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoresponsive nanoparticles + plasmonic nanoparticles = photoresponsive heterodimers: facile synthesis and sunlight-induced reversible clustering.
    Han H; Lee JY; Lu X
    Chem Commun (Camb); 2013 Jul; 49(55):6122-4. PubMed ID: 23694849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Powered Broadband Photodetector using Plasmonic Titanium Nitride.
    Hussain AA; Sharma B; Barman T; Pal AR
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4258-65. PubMed ID: 26807708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma.
    Feng N; Wu P; Li Q; Mei Y; Shi S; Yu J; Xu J; Liu Y; Wang Y
    J Drug Target; 2008 Jul; 16(6):479-85. PubMed ID: 18604660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory.
    Garle A; Kong S; Ojha U; Budhlall BM
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):645-57. PubMed ID: 22252722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VO
    Hao Q; Li W; Xu H; Wang J; Yin Y; Wang H; Ma L; Ma F; Jiang X; Schmidt OG; Chu PK
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29349814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity.
    Yu X; Zhou S; Zheng X; Guo T; Xiao Y; Song B
    Nanotechnology; 2009 Jun; 20(23):235702. PubMed ID: 19451683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo- and Photoresponsive Actuators with Freestanding Carbon Nitride Films.
    Cai Z; Song Z; Guo L
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12770-12776. PubMed ID: 30855943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape memory polymers with silicon-containing segments.
    Schoener CA; Weyand CB; Murthy R; Grunlan MA
    J Mater Chem; 2010 Mar; 20(9):1787-1793. PubMed ID: 31595106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanorods or nanospheres? Role of particle shape on tuning the shape memory effect of semicrystalline poly(ε-caprolactone) networks.
    Xu H; Budhlall BM
    RSC Adv; 2018 Aug; 8(51):29283-29294. PubMed ID: 35547987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles.
    Zhang H; Zhao Y
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13069-75. PubMed ID: 24308556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Way Reversible Shape Memory Polymers Containing Polydopamine Nanospheres: Light Actuation, Robotic Locomotion, and Artificial Muscles.
    Wang K; Zhu XX
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3099-3106. PubMed ID: 33435029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro.
    Gou M; Zheng L; Peng X; Men K; Zheng X; Zeng S; Guo G; Luo F; Zhao X; Chen L; Wei Y; Qian Z
    Int J Pharm; 2009 Jun; 375(1-2):170-6. PubMed ID: 19427143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.
    Li Y; Chen H; Liu D; Wang W; Liu Y; Zhou S
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12988-99. PubMed ID: 26011859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles.
    Chen Y; Wang Z; He Y; Yoon YJ; Jung J; Zhang G; Lin Z
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1391-E1400. PubMed ID: 29386380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.