These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26890341)

  • 1. Stability of organic solar cells: challenges and strategies.
    Cheng P; Zhan X
    Chem Soc Rev; 2016 May; 45(9):2544-82. PubMed ID: 26890341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in Stability of Organic Solar Cells.
    Duan L; Uddin A
    Adv Sci (Weinh); 2020 Jun; 7(11):1903259. PubMed ID: 32537401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Exceptional Properties to Stability Challenges of Perovskite Solar Cells.
    Gholipour S; Saliba M
    Small; 2018 Nov; 14(46):e1802385. PubMed ID: 30106507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.
    Yin Z; Wei J; Zheng Q
    Adv Sci (Weinh); 2016 Aug; 3(8):1500362. PubMed ID: 27812480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligomer Molecules for Efficient Organic Photovoltaics.
    Lin Y; Zhan X
    Acc Chem Res; 2016 Feb; 49(2):175-83. PubMed ID: 26540366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges to the Stability of Active Layer Materials in Organic Solar Cells.
    Wang K; Li Y; Li Y
    Macromol Rapid Commun; 2020 Feb; 41(4):e1900437. PubMed ID: 31894897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells.
    Meng L; You J; Guo TF; Yang Y
    Acc Chem Res; 2016 Jan; 49(1):155-65. PubMed ID: 26693663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of inverted organic solar cells with TiO₂ interface layer by using low-temperature atomic layer deposition.
    Lin Z; Jiang C; Zhu C; Zhang J
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):713-8. PubMed ID: 23336267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in non-fullerene organic solar cells: from lab to fab.
    Ma L; Zhang S; Wang J; Xu Y; Hou J
    Chem Commun (Camb); 2020 Nov; 56(92):14337-14352. PubMed ID: 33118555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlating high power conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures.
    Das S; Keum JK; Browning JF; Gu G; Yang B; Dyck O; Do C; Chen W; Chen J; Ivanov IN; Hong K; Rondinone AJ; Joshi PC; Geohegan DB; Duscher G; Xiao K
    Nanoscale; 2015 Oct; 7(38):15576-83. PubMed ID: 26220775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.
    Kang H; Kim G; Kim J; Kwon S; Kim H; Lee K
    Adv Mater; 2016 Sep; 28(36):7821-7861. PubMed ID: 27345936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-Based Electrodes for Organic Solar Cells.
    Shi X; Chen S
    Chempluschem; 2023 May; 88(5):e202300008. PubMed ID: 37069481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Efficiency and Stable Organic Solar Cells Enabled by Dual Cathode Buffer Layers.
    Huai Z; Wang L; Sun Y; Fan R; Huang S; Zhao X; Li X; Fu G; Yang S
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5682-5692. PubMed ID: 29345140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Solar Cell Materials toward Commercialization.
    Xue R; Zhang J; Li Y; Li Y
    Small; 2018 Oct; 14(41):e1801793. PubMed ID: 30106505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Engineering for Highly Efficient Organic Solar Cells.
    Tang H; Bai Y; Zhao H; Qin X; Hu Z; Zhou C; Huang F; Cao Y
    Adv Mater; 2024 Apr; 36(16):e2212236. PubMed ID: 36867581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Efficient Tandem Organic Solar Cells: From Materials to Device Engineering.
    Zhang K; Ying L; Yip HL; Huang F; Cao Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):39937-39947. PubMed ID: 32840356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells.
    Wang J; Liu K; Ma L; Zhan X
    Chem Rev; 2016 Dec; 116(23):14675-14725. PubMed ID: 27960267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells.
    Park JS; Kim GU; Lee S; Lee JW; Li S; Lee JY; Kim BJ
    Adv Mater; 2022 Aug; 34(31):e2201623. PubMed ID: 35765775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small molecule organic semiconductors on the move: promises for future solar energy technology.
    Mishra A; Bäuerle P
    Angew Chem Int Ed Engl; 2012 Feb; 51(9):2020-67. PubMed ID: 22344682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Applications of Carbon Nanotubes in Organic Solar Cells.
    Muchuweni E; Mombeshora ET; Martincigh BS; Nyamori VO
    Front Chem; 2021; 9():733552. PubMed ID: 35071180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.