These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
671 related articles for article (PubMed ID: 26890455)
1. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation. Tong S; Xu DP; Liu ZM; Du Y; Wang XK J Craniofac Surg; 2016 Mar; 27(2):509-15. PubMed ID: 26890455 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S; Xu DP; Liu ZM; Du Y; Wang XK Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815 [TBL] [Abstract][Full Text] [Related]
3. Construction and in vitro characterization of three-dimensional silk fibroinchitosan scaffolds. Tong S; Xu DP; Liu ZM; Wang XK Dent Mater J; 2015; 34(4):475-84. PubMed ID: 26235712 [TBL] [Abstract][Full Text] [Related]
4. In vitro culture of hFOB1.19 osteoblast cells on TGF-β1-SF-CS three-dimensional scaffolds. Tong S; Xue L; Xu DP; Liu ZM; Du Y; Wang XK Mol Med Rep; 2016 Jan; 13(1):181-7. PubMed ID: 26530112 [TBL] [Abstract][Full Text] [Related]
5. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration. Li J; Wang Q; Gu Y; Zhu Y; Chen L; Chen Y Med Sci Monit; 2017 Nov; 23():5311-5320. PubMed ID: 29114098 [TBL] [Abstract][Full Text] [Related]
6. Silk fibroin/chitosan-hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro. Chung TW; Chang YL J Mater Sci Mater Med; 2010 Apr; 21(4):1343-51. PubMed ID: 20135206 [TBL] [Abstract][Full Text] [Related]
7. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Sun K; Li H; Li R; Nian Z; Li D; Xu C Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology. Zeng S; Liu L; Shi Y; Qiu J; Fang W; Rong M; Guo Z; Gao W PLoS One; 2015; 10(6):e0128658. PubMed ID: 26083846 [TBL] [Abstract][Full Text] [Related]
9. [Preparation of silk fibroin-chitosan scaffolds and their properties]. Zhang P; Wang W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1517-22. PubMed ID: 24640377 [TBL] [Abstract][Full Text] [Related]
10. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Farokhi M; Mottaghitalab F; Shokrgozar MA; Ai J; Hadjati J; Azami M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():401-10. PubMed ID: 24411394 [TBL] [Abstract][Full Text] [Related]
11. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. Li DW; Lei X; He FL; He J; Liu YL; Ye YJ; Deng X; Duan E; Yin DC Int J Biol Macromol; 2017 Dec; 105(Pt 1):584-597. PubMed ID: 28802849 [TBL] [Abstract][Full Text] [Related]
12. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology. Teimouri A; Ebrahimi R; Emadi R; Beni BH; Chermahini AN Int J Biol Macromol; 2015 May; 76():292-302. PubMed ID: 25709014 [TBL] [Abstract][Full Text] [Related]
13. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
15. Functionalization of silk fibroin through anionic fibroin derived polypeptides. Griffanti G; James-Bhasin M; Donelli I; Freddi G; Nazhat SN Biomed Mater; 2018 Nov; 14(1):015006. PubMed ID: 30412470 [TBL] [Abstract][Full Text] [Related]
16. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Zheng A; Cao L; Liu Y; Wu J; Zeng D; Hu L; Zhang X; Jiang X Carbohydr Polym; 2018 Nov; 199():244-255. PubMed ID: 30143127 [TBL] [Abstract][Full Text] [Related]
17. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
18. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
19. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D. Bäcker A; Erhardt O; Wietbrock L; Schel N; Göppert B; Dirschka M; Abaffy P; Sollich T; Cecilia A; Gruhl FJ Biopolymers; 2017 Feb; 107(2):70-79. PubMed ID: 27696348 [TBL] [Abstract][Full Text] [Related]
20. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds. Gupta V; Davis G; Gordon A; Altman AM; Reece GP; Gascoyne PR; Mathur AB J Biomed Mater Res A; 2010 Aug; 94(2):515-23. PubMed ID: 20186770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]