These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26890530)

  • 1. A Probabilistic Analysis of Muscle Force Uncertainty for Control.
    Berniker M; Jarc A; Kording K; Tresch M
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2359-2367. PubMed ID: 26890530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FES control of isometric forces in the rat hindlimb using many muscles.
    Jarc AM; Berniker M; Tresch MC
    IEEE Trans Biomed Eng; 2013 May; 60(5):1422-30. PubMed ID: 23303688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty in Limb Configuration Makes Minimal Contribution to Errors Between Observed and Predicted Forces in a Musculoskeletal Model of the Rat Hindlimb.
    Wei Q; Pai DK; Tresch MC
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):469-476. PubMed ID: 29346113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isometric and concentric performance of electrically stimulated ankle plantar flexor muscles in intact rat.
    Willems ME; Stauber WT
    Exp Physiol; 1999 Mar; 84(2):379-89. PubMed ID: 10226178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach to a muscle model with a stimulus frequency-force relationship for FES applications.
    Watanabe T; Futami R; Hoshimiya N; Handa Y
    IEEE Trans Rehabil Eng; 1999 Mar; 7(1):12-8. PubMed ID: 10188603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool.
    Lynch CL; Graham GM; Popovic MR
    J Neural Eng; 2011 Aug; 8(4):046034. PubMed ID: 21757801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of ground reaction forces by hindlimb muscles during cat locomotion.
    Kaya M; Leonard TR; Herzog W
    J Biomech; 2006; 39(15):2752-66. PubMed ID: 16310793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of signal-dependent noise during isometric force production.
    Jones KE; Hamilton AF; Wolpert DM
    J Neurophysiol; 2002 Sep; 88(3):1533-44. PubMed ID: 12205173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control.
    Lin CC; Liu WC; Chan CC; Ju MS
    J Neural Eng; 2012 Apr; 9(2):026026. PubMed ID: 22422279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles.
    Huijing PA; van de Langenberg RW; Meesters JJ; Baan GC
    J Electromyogr Kinesiol; 2007 Dec; 17(6):680-9. PubMed ID: 17383898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-joint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb.
    van Antwerp KW; Burkholder TJ; Ting LH
    J Biomech; 2007; 40(16):3570-9. PubMed ID: 17640652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-muscle FES force control of the human arm for arbitrary goals.
    Schearer EM; Liao YW; Perreault EJ; Tresch MC; Memberg WD; Kirsch RF; Lynch KM
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):654-63. PubMed ID: 24122573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations.
    Myers CA; Laz PJ; Shelburne KB; Davidson BS
    Ann Biomed Eng; 2015 May; 43(5):1098-111. PubMed ID: 25404535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of probabilistic methods to predict muscle activity: implications for neuroprosthetics.
    Johnson LA; Fuglevand AJ
    J Neural Eng; 2009 Oct; 6(5):055008. PubMed ID: 19721180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of number of lengthening contractions on rat isometric force production at different frequencies of nerve stimulation.
    Willems ME; Stauber WT
    Acta Physiol (Oxf); 2009 Jul; 196(3):351-6. PubMed ID: 19053963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.
    Zhang Q; Hayashibe M; Azevedo-Coste C
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2299-307. PubMed ID: 23529189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of biomechanics and muscle activation strategy in the production of endpoint force patterns in the cat hindlimb.
    Lemay MA; Bhowmik-Stoker M; McConnell GC; Grill WM
    J Biomech; 2007; 40(16):3679-87. PubMed ID: 17692854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of timing electrical stimulation to robotic-assisted stepping on neuromuscular activity and associated kinematics.
    Askari S; Chao T; de Leon RD; Won DS
    J Rehabil Res Dev; 2013; 50(6):875-92. PubMed ID: 24203547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innervation and properties of the rat FDSBQ muscle: an animal model to evaluate voluntary muscle strength after incomplete spinal cord injury.
    Thomas CK; Esipenko V; Xu XM; Madsen PW; Gordon T
    Exp Neurol; 1999 Aug; 158(2):279-89. PubMed ID: 10415136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.