These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26890659)
1. Characterization of Ocular Biomechanics in Pellucid Marginal Degeneration. Lenk J; Haustein M; Terai N; Spoerl E; Raiskup F Cornea; 2016 Apr; 35(4):506-9. PubMed ID: 26890659 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic capacity of biomechanical indices from a dynamic bidirectional applanation device in pellucid marginal degeneration. Labiris G; Giarmoukakis A; Sideroudi H; Song X; Kozobolis V; Seitz B; Gatzioufas Z J Cataract Refract Surg; 2014 Jun; 40(6):1006-12. PubMed ID: 24774010 [TBL] [Abstract][Full Text] [Related]
3. Altered Corneal Biomechanics According to the Biomechanical E-Staging in Pellucid Marginal Degeneration. Mergen B; Sideroudi H; Seitz B; Flockerzi E Cornea; 2024 Nov; 43(11):1361-1367. PubMed ID: 38334467 [TBL] [Abstract][Full Text] [Related]
4. [Evaluation of corneal biomechanical properties in glaucoma and control patients by dynamic Scheimpflug corneal imaging technology]. Coste V; Schweitzer C; Paya C; Touboul D; Korobelnik JF J Fr Ophtalmol; 2015 Jun; 38(6):504-13. PubMed ID: 25976131 [TBL] [Abstract][Full Text] [Related]
5. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Huseynova T; Waring GO; Roberts C; Krueger RR; Tomita M Am J Ophthalmol; 2014 Apr; 157(4):885-93. PubMed ID: 24388837 [TBL] [Abstract][Full Text] [Related]
6. Effect of diabetes mellitus on Corvis ST measurement process. Pérez-Rico C; Gutiérrez-Ortíz C; González-Mesa A; Zandueta AM; Moreno-Salgueiro A; Germain F Acta Ophthalmol; 2015 May; 93(3):e193-8. PubMed ID: 25270375 [TBL] [Abstract][Full Text] [Related]
7. Corneal hysteresis and corneal resistance factor in pellucid marginal degeneration. Sedaghat MR; Ostadi-Moghadam H; Jabbarvand M; Askarizadeh F; Momeni-Moghaddam H; Narooie-Noori F J Curr Ophthalmol; 2018 Mar; 30(1):42-47. PubMed ID: 29564407 [TBL] [Abstract][Full Text] [Related]
8. Dynamic contour tonometry: a new way to assess intraocular pressure in ectatic corneas. Ozbek Z; Cohen EJ; Hammersmith KM; Rapuano CJ Cornea; 2006 Sep; 25(8):890-4. PubMed ID: 17102662 [TBL] [Abstract][Full Text] [Related]
9. Measurement of Corneal Biomechanical Properties in Diabetes Mellitus Using the Ocular Response Analyzer and the Corvis ST. Ramm L; Herber R; Spoerl E; Pillunat LE; Terai N Cornea; 2019 May; 38(5):595-599. PubMed ID: 30681520 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus. Luz A; Lopes B; Hallahan KM; Valbon B; Ramos I; Faria-Correia F; Schor P; Dupps WJ; Ambrósio R J Refract Surg; 2016 Jul; 32(7):479-94. PubMed ID: 27400080 [TBL] [Abstract][Full Text] [Related]
11. Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer. Herber R; Ramm L; Spoerl E; Raiskup F; Pillunat LE; Terai N J Cataract Refract Surg; 2019 Jun; 45(6):778-788. PubMed ID: 30902432 [TBL] [Abstract][Full Text] [Related]
12. Assessment of corneal biomechanical parameters in myopes and emmetropes using the Corvis ST. Lee R; Chang RT; Wong IY; Lai JS; Lee JW; Singh K Clin Exp Optom; 2016 Mar; 99(2):157-62. PubMed ID: 26893029 [TBL] [Abstract][Full Text] [Related]
13. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. Tian L; Ko MW; Wang LK; Zhang JY; Li TJ; Huang YF; Zheng YP J Refract Surg; 2014 Nov; 30(11):785-91. PubMed ID: 25291757 [TBL] [Abstract][Full Text] [Related]
14. Corneal Deformation Response and Ocular Geometry: A Noninvasive Diagnostic Strategy in Marfan Syndrome. Beene LC; Traboulsi EI; Seven I; Ford MR; Sinha Roy A; Butler RS; Dupps WJ Am J Ophthalmol; 2016 Jan; 161():56-64.e1. PubMed ID: 26432567 [TBL] [Abstract][Full Text] [Related]
15. Discriminant Value of Custom Ocular Response Analyzer Waveform Derivatives in Forme Fruste Keratoconus. Luz A; Lopes B; Hallahan KM; Valbon B; Fontes B; Schor P; Dupps WJ; Ambrósio R Am J Ophthalmol; 2016 Apr; 164():14-21. PubMed ID: 26743618 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical evaluation of cornea in topographically normal relatives of patients with keratoconus. Kara N; Altinkaynak H; Baz O; Goker Y Cornea; 2013 Mar; 32(3):262-6. PubMed ID: 22677642 [TBL] [Abstract][Full Text] [Related]
17. Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea. Smedowski A; Weglarz B; Tarnawska D; Kaarniranta K; Wylegala E Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):666-73. PubMed ID: 24425850 [TBL] [Abstract][Full Text] [Related]
18. Corneal biomechanical parameters in keratoconus eyes with abnormal elevation on the back corneal surface only versus both back and front surfaces. Sedaghat MR; Momeni-Moghaddam H; Roberts CJ; Maddah N; Ambrósio R; Hosseini SR Sci Rep; 2021 Jun; 11(1):11971. PubMed ID: 34099765 [TBL] [Abstract][Full Text] [Related]
19. Role of Age and Myopia in Simultaneous Assessment of Corneal and Extraocular Tissue Stiffness by Air-Puff Applanation. Matalia J; Francis M; Tejwani S; Dudeja G; Rajappa N; Sinha Roy A J Refract Surg; 2016 Jul; 32(7):486-93. PubMed ID: 27400081 [TBL] [Abstract][Full Text] [Related]