These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 26890794)
1. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer. Maurya R; Paliwal C; Chokshi K; Pancha I; Ghosh T; Satpati GG; Pal R; Ghosh A; Mishra S Bioresour Technol; 2016 May; 207():197-204. PubMed ID: 26890794 [TBL] [Abstract][Full Text] [Related]
2. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
3. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086 [TBL] [Abstract][Full Text] [Related]
4. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
5. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses. Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438 [TBL] [Abstract][Full Text] [Related]
6. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris. Wang W; Zhou W; Liu J; Li Y; Zhang Y Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401 [TBL] [Abstract][Full Text] [Related]
7. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634 [TBL] [Abstract][Full Text] [Related]
8. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors. Luangpipat T; Chisti Y J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890 [TBL] [Abstract][Full Text] [Related]
9. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819 [TBL] [Abstract][Full Text] [Related]
10. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Cho DH; Ramanan R; Heo J; Lee J; Kim BH; Oh HM; Kim HS Bioresour Technol; 2015 Jan; 175():578-85. PubMed ID: 25459870 [TBL] [Abstract][Full Text] [Related]
11. Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Arora N; Philippidis GP Sci Rep; 2021 Mar; 11(1):6779. PubMed ID: 33762646 [TBL] [Abstract][Full Text] [Related]
12. Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs). Ma X; Zheng H; Huang H; Liu Y; Ruan R Appl Biochem Biotechnol; 2014 Oct; 174(4):1631-1650. PubMed ID: 25138600 [TBL] [Abstract][Full Text] [Related]
13. A novel cell disruption technique to enhance lipid extraction from microalgae. Steriti A; Rossi R; Concas A; Cao G Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708 [TBL] [Abstract][Full Text] [Related]
14. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
15. A Comparative Analysis Assessing Growth Dynamics of Locally Isolated Chlorella sorokiniana and Chlorella vulgaris for Biomass and Lipid Production with Biodiesel Potential. Usman HM; Kamaroddin MF; Sani MH; Malek NANN; Omoregie AI; Zainal A Bioresour Technol; 2024 Jul; 403():130868. PubMed ID: 38782193 [TBL] [Abstract][Full Text] [Related]
16. Enhanced isolation of lipids from microalgal biomass with high water content for biodiesel production. Alam MA; Wu J; Xu J; Wang Z Bioresour Technol; 2019 Nov; 291():121834. PubMed ID: 31371157 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
18. Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2019; 10(2):115-123. PubMed ID: 30205808 [TBL] [Abstract][Full Text] [Related]
19. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Hultberg M; Jönsson HL; Bergstrand KJ; Carlsson AS Bioresour Technol; 2014 May; 159():465-7. PubMed ID: 24718357 [TBL] [Abstract][Full Text] [Related]
20. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]