BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26891410)

  • 1. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation.
    Lee JH; Kim H; Kim JH; Lee SH
    Lab Chip; 2016 Mar; 16(6):959-76. PubMed ID: 26891410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays.
    Vitale F; Shen W; Driscoll N; Burrell JC; Richardson AG; Adewole O; Murphy B; Ananthakrishnan A; Oh H; Wang T; Lucas TH; Cullen DK; Allen MG; Litt B
    PLoS One; 2018; 13(11):e0206137. PubMed ID: 30383805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress on Transparent Microelectrode-Based Soft Bioelectronic Devices for Neuroscience and Cardiac Research.
    Lu L
    ACS Appl Bio Mater; 2023 May; 6(5):1701-1719. PubMed ID: 37076978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantable Neural Microelectrodes: How to Reduce Immune Response.
    Xiang Y; Zhao Y; Cheng T; Sun S; Wang J; Pei R
    ACS Biomater Sci Eng; 2024 May; 10(5):2762-2783. PubMed ID: 38591141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabricated nerve-electrode interfaces in neural prosthetics and neural engineering.
    Song YA; Ibrahim AM; Rabie AN; Han J; Lin SJ
    Biotechnol Genet Eng Rev; 2013; 29():113-34. PubMed ID: 24568276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microengineered neural probes for in vivo recording.
    Valles KD
    Methods Mol Biol; 2010; 583():135-48. PubMed ID: 19763463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes.
    Apollo NV; Murphy B; Prezelski K; Driscoll N; Richardson AG; Lucas TH; Vitale F
    J Neural Eng; 2020 Sep; 17(4):041002. PubMed ID: 32759476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recessed Traces for Planarized Passivation of Chronic Neural Microelectrodes.
    Nolta NF; Ghelich P; Han M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5125-5128. PubMed ID: 31947012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in conductive hydrogels for neural recording and stimulation.
    Dawit H; Zhao Y; Wang J; Pei R
    Biomater Sci; 2024 May; 12(11):2786-2800. PubMed ID: 38682423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording.
    Lewitus D; Vogelstein RJ; Zhen G; Choi YS; Kohn J; Harshbarger S; Jia X
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):204-12. PubMed ID: 21147598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex.
    Subbaroyan J; Martin DC; Kipke DR
    J Neural Eng; 2005 Dec; 2(4):103-13. PubMed ID: 16317234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording.
    Castagnola V; Descamps E; Lecestre A; Dahan L; Remaud J; Nowak LG; Bergaud C
    Biosens Bioelectron; 2015 May; 67():450-7. PubMed ID: 25256782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime.
    Dryg ID; Ward MP; Qing KY; Mei H; Schaffer JE; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):562-71. PubMed ID: 25706720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces.
    Kozai TD; Langhals NB; Patel PR; Deng X; Zhang H; Smith KL; Lahann J; Kotov NA; Kipke DR
    Nat Mater; 2012 Dec; 11(12):1065-73. PubMed ID: 23142839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of microelectrode materials for direct-current electrocorticography.
    Li C; Narayan RK; Wu PM; Rajan N; Wu Z; Mehan N; Golanov EV; Ahn CH; Hartings JA
    J Neural Eng; 2016 Feb; 13(1):016008. PubMed ID: 26655565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants.
    Yang W; Gong Y; Li W
    Front Bioeng Biotechnol; 2020; 8():622923. PubMed ID: 33585422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.