BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26891410)

  • 21. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The progress in researches on biocompatibility for direct brain-machine interface].
    Luo P; Xie G; Jiang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Dec; 24(6):1416-8. PubMed ID: 18232506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein adsorption on materials for recording sites on implantable microelectrodes.
    Selvakumaran J; Keddie JL; Ewins DJ; Hughes MP
    J Mater Sci Mater Med; 2008 Jan; 19(1):143-51. PubMed ID: 17587151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures.
    Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG
    J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.
    Hébert C; Warnking J; Depaulis A; Garçon LA; Mermoux M; Eon D; Mailley P; Omnès F
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():25-31. PubMed ID: 25491956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Advancements in Graphene-Based Implantable Electrodes for Neural Recording/Stimulation.
    Alahi MEE; Rizu MI; Tina FW; Huang Z; Nag A; Afsarimanesh N
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The future of cerebral surgery: a kaleidoscope of opportunities.
    Elder JB; Hoh DJ; Oh BC; Heller AC; Liu CY; Apuzzo ML
    Neurosurgery; 2008 Jun; 62(6 Suppl 3):1555-79; discussion 1579-82. PubMed ID: 18695575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue-Matchable and Implantable Batteries Toward Biomedical Applications.
    Yan B; Zhao Y; Peng H
    Small Methods; 2023 Oct; 7(10):e2300501. PubMed ID: 37469190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.
    Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Making a case for endovascular approaches for neural recording and stimulation.
    Thielen B; Xu H; Fujii T; Rangwala SD; Jiang W; Lin M; Kammen A; Liu C; Selvan P; Song D; Mack WJ; Meng E
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36603221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gelatine-embedded electrodes--a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes.
    Lind G; Linsmeier CE; Thelin J; Schouenborg J
    J Neural Eng; 2010 Aug; 7(4):046005. PubMed ID: 20551508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocompatibility considerations at stimulating electrode interfaces.
    Beard RB; Hung BN; Schmukler R
    Ann Biomed Eng; 1992; 20(3):395-410. PubMed ID: 1443832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response of brain tissue to chronically implanted neural electrodes.
    Polikov VS; Tresco PA; Reichert WM
    J Neurosci Methods; 2005 Oct; 148(1):1-18. PubMed ID: 16198003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of optically controlled "living electrodes" with long-projecting axon tracts for a synaptic brain-machine interface.
    Adewole DO; Struzyna LA; Burrell JC; Harris JP; Nemes AD; Petrov D; Kraft RH; Chen HI; Serruya MD; Wolf JA; Cullen DK
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research.
    Anderson DJ
    Hear Res; 2008 Aug; 242(1-2):31-41. PubMed ID: 18343062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress and challenges of implantable neural interfaces based on nature-derived materials.
    Redolfi Riva E; Micera S
    Bioelectron Med; 2021 Apr; 7(1):6. PubMed ID: 33902750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regenerative Electrode Interfaces for Neural Prostheses.
    Thompson CH; Zoratti MJ; Langhals NB; Purcell EK
    Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.