These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26891410)

  • 61. Integrated electrode and high density feedthrough system for chip-scale implantable devices.
    Green RA; Guenther T; Jeschke C; Jaillon A; Yu JF; Dueck WF; Lim WW; Henderson WC; Vanhoestenberghe A; Lovell NH; Suaning GJ
    Biomaterials; 2013 Aug; 34(26):6109-18. PubMed ID: 23706781
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Application of a Novel Measurement Setup for Characterization of Graphene Microelectrodes and a Comparative Study of Variables Influencing Charge Injection Limits of Implantable Microelectrodes.
    Cisnal A; R Ihmig F; Fraile JC; Pérez-Turiel J; Muñoz-Martinez V
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31213039
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Implantable bioelectric interfaces for lost nerve functions.
    Heiduschka P; Thanos S
    Prog Neurobiol; 1998 Aug; 55(5):433-61. PubMed ID: 9670213
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo.
    Duan YY; Clark GM; Cowan RS
    Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces.
    Rihani R; Tasnim N; Javed M; Usoro JO; D'Souza TM; Ware TH; Pancrazio JJ
    Neuromodulation; 2022 Dec; 25(8):1259-1267. PubMed ID: 33501705
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface.
    Tian HC; Liu JQ; Wei DX; Kang XY; Zhang C; Du JC; Yang B; Chen X; Zhu HY; Nuli YN; Yang CS
    Biomaterials; 2014 Feb; 35(7):2120-9. PubMed ID: 24333027
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A review of organic and inorganic biomaterials for neural interfaces.
    Fattahi P; Yang G; Kim G; Abidian MR
    Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Next generation material interfaces for neural engineering.
    Wunderlich H; Kozielski KL
    Curr Opin Biotechnol; 2021 Dec; 72():29-38. PubMed ID: 34601203
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Soft, Implantable Bioelectronic Interfaces for Translational Research.
    Schiavone G; Fallegger F; Kang X; Barra B; Vachicouras N; Roussinova E; Furfaro I; Jiguet S; Seáñez I; Borgognon S; Rowald A; Li Q; Qin C; Bézard E; Bloch J; Courtine G; Capogrosso M; Lacour SP
    Adv Mater; 2020 Apr; 32(17):e1906512. PubMed ID: 32173913
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conducting polymer coated neural recording electrodes.
    Harris AR; Morgan SJ; Chen J; Kapsa RM; Wallace GG; Paolini AG
    J Neural Eng; 2013 Feb; 10(1):016004. PubMed ID: 23234724
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biocompatible Microelectrode for In Vivo Sensing with Improved Performance.
    Yin Y; Zeng H; Wang HM; Zhang M
    Langmuir; 2023 Feb; 39(5):1719-1729. PubMed ID: 36689914
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes.
    Gulino M; Kim D; Pané S; Santos SD; Pêgo AP
    Front Neurosci; 2019; 13():689. PubMed ID: 31333407
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Self-organization of "fibro-axonal" composite tissue around unmodified metallic micro-electrodes can form a functioning interface with a peripheral nerve: A new direction for creating long-term neural interfaces.
    Lahiri A; Delgado IM; Sheshadri S; Ng KA; Nag S; Yen SC; Thakor NV
    Muscle Nerve; 2016 May; 53(5):789-96. PubMed ID: 26425938
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Porous silicon as a potential electrode material in a nerve repair setting: Tissue reactions.
    Johansson F; Wallman L; Danielsen N; Schouenborg J; Kanje M
    Acta Biomater; 2009 Jul; 5(6):2230-7. PubMed ID: 19285930
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes.
    Rao L; Zhou H; Li T; Li C; Duan YY
    Acta Biomater; 2012 Jul; 8(6):2233-42. PubMed ID: 22406507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.