BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 26891691)

  • 1. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation.
    Garg AD; Romano E; Rufo N; Agostinis P
    Cell Death Differ; 2016 Jun; 23(6):938-51. PubMed ID: 26891691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
    Matlung HL; Szilagyi K; Barclay NA; van den Berg TK
    Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRPα-CD47 Immune Checkpoint Blockade in Anticancer Therapy.
    Veillette A; Chen J
    Trends Immunol; 2018 Mar; 39(3):173-184. PubMed ID: 29336991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer immunotherapy targeting the CD47/SIRPα axis.
    Weiskopf K
    Eur J Cancer; 2017 May; 76():100-109. PubMed ID: 28286286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionarily conserved resistance to phagocytosis observed in melanoma cells is insensitive to upregulation of pro-phagocytic signals and to CD47 blockade.
    Anderson KL; Snyder KM; Ito D; Lins DC; Mills LJ; Weiskopf K; Ring NG; Ring AM; Shimizu Y; Mescher MF; Weissman IL; Modiano JF
    Melanoma Res; 2020 Apr; 30(2):147-158. PubMed ID: 31205227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses.
    Garg AD; Agostinis P
    Immunol Rev; 2017 Nov; 280(1):126-148. PubMed ID: 29027218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phagocytosis checkpoints as new targets for cancer immunotherapy.
    Feng M; Jiang W; Kim BYS; Zhang CC; Fu YX; Weissman IL
    Nat Rev Cancer; 2019 Oct; 19(10):568-586. PubMed ID: 31462760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD47 is a novel potent immunotherapy target in human malignancies: current studies and future promises.
    Tong B; Wang M
    Future Oncol; 2018 Sep; 14(21):2179-2188. PubMed ID: 29667847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis.
    Koh E; Lee EJ; Nam GH; Hong Y; Cho E; Yang Y; Kim IS
    Biomaterials; 2017 Mar; 121():121-129. PubMed ID: 28086180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phagocytic clearance of apoptotic, necrotic, necroptotic and pyroptotic cells.
    Atkin-Smith GK
    Biochem Soc Trans; 2021 Apr; 49(2):793-804. PubMed ID: 33843978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putting the brakes on anticancer therapies: suppression of innate immune pathways by tumor-associated myeloid cells.
    Jinushi M; Yagita H; Yoshiyama H; Tahara H
    Trends Mol Med; 2013 Sep; 19(9):536-45. PubMed ID: 23810190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BNIP3 modulates the interface between B16-F10 melanoma cells and immune cells.
    Romano E; Rufo N; Korf H; Mathieu C; Garg AD; Agostinis P
    Oncotarget; 2018 Apr; 9(25):17631-17644. PubMed ID: 29707136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: Soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation.
    Litvack ML; Palaniyar N
    Innate Immun; 2010 Jun; 16(3):191-200. PubMed ID: 20529971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal.
    Garg AD; Elsen S; Krysko DV; Vandenabeele P; de Witte P; Agostinis P
    Oncotarget; 2015 Sep; 6(29):26841-60. PubMed ID: 26314964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engulfment signals and the phagocytic machinery for apoptotic cell clearance.
    Park SY; Kim IS
    Exp Mol Med; 2017 May; 49(5):e331. PubMed ID: 28496201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characteristics of immunogenic cancer cell death.
    Tesniere A; Panaretakis T; Kepp O; Apetoh L; Ghiringhelli F; Zitvogel L; Kroemer G
    Cell Death Differ; 2008 Jan; 15(1):3-12. PubMed ID: 18007663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Compounds of Marine Origin as Inducers of Immunogenic Cell Death (ICD): Potential Role for Cancer Interception and Therapy.
    Sansone C; Bruno A; Piscitelli C; Baci D; Fontana A; Brunet C; Noonan DM; Albini A
    Cells; 2021 Jan; 10(2):. PubMed ID: 33504012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Blockade of the Ubiquitous Checkpoint Receptor CD47 Is Enabled by Dual-Targeting Bispecific Antibodies.
    Dheilly E; Moine V; Broyer L; Salgado-Pires S; Johnson Z; Papaioannou A; Cons L; Calloud S; Majocchi S; Nelson R; Rousseau F; Ferlin W; Kosco-Vilbois M; Fischer N; Masternak K
    Mol Ther; 2017 Feb; 25(2):523-533. PubMed ID: 28153099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From regulation of dying cell engulfment to development of anti-cancer therapy.
    Krysko DV; Vandenabeele P
    Cell Death Differ; 2008 Jan; 15(1):29-38. PubMed ID: 18007662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putting the brakes on phagocytosis: "don't-eat-me" signaling in physiology and disease.
    Kelley SM; Ravichandran KS
    EMBO Rep; 2021 Jun; 22(6):e52564. PubMed ID: 34041845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.