These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 26891723)
1. Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway. Li CY; Zhou Q; Yang LC; Chen YH; Hou JW; Guo K; Wang YP; Li YG Basic Res Cardiol; 2016 Mar; 111(2):19. PubMed ID: 26891723 [TBL] [Abstract][Full Text] [Related]
2. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. Yang CY; Li JP; Chiu LL; Lan JL; Chen DY; Chuang HC; Huang CY; Tan TH J Immunol; 2014 Feb; 192(4):1547-57. PubMed ID: 24403530 [TBL] [Abstract][Full Text] [Related]
3. Caspase recruitment domain 6 protects against cardiac hypertrophy in response to pressure overload. Li L; Chen W; Zhu Y; Wang X; Jiang DS; Huang F; Wang L; Xiang F; Qin W; Wang Q; Zhang R; Zhu X; Li H; Chen X Hypertension; 2014 Jul; 64(1):94-102. PubMed ID: 24777975 [TBL] [Abstract][Full Text] [Related]
4. Hepatocyte DUSP14 maintains metabolic homeostasis and suppresses inflammation in the liver. Wang S; Yan ZZ; Yang X; An S; Zhang K; Qi Y; Zheng J; Ji YX; Wang PX; Fang C; Zhu XY; Shen LJ; Yan FJ; Bao R; Tian S; She ZG; Tang YD Hepatology; 2018 Apr; 67(4):1320-1338. PubMed ID: 29077210 [TBL] [Abstract][Full Text] [Related]
5. Dual specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload. Li WM; Zhao YF; Zhu GF; Peng WH; Zhu MY; Yu XJ; Chen W; Xu DC; Xu YW Clin Sci (Lond); 2017 Jan; 131(2):141-154. PubMed ID: 27702885 [TBL] [Abstract][Full Text] [Related]
6. Dual-Specificity Phosphatase 26 Protects Against Cardiac Hypertrophy Through TAK1. Zhao J; Jiang X; Liu J; Ye P; Jiang L; Chen M; Xia J J Am Heart Assoc; 2021 Feb; 10(4):e014311. PubMed ID: 33522247 [TBL] [Abstract][Full Text] [Related]
7. The dual-specificity phosphatase DUSP14 negatively regulates tumor necrosis factor- and interleukin-1-induced nuclear factor-κB activation by dephosphorylating the protein kinase TAK1. Zheng H; Li Q; Chen R; Zhang J; Ran Y; He X; Li S; Shu HB J Biol Chem; 2013 Jan; 288(2):819-25. PubMed ID: 23229544 [TBL] [Abstract][Full Text] [Related]
8. Olmesartan ameliorates pressure overload-induced cardiac remodeling through inhibition of TAK1/p38 signaling in mice. Wu L; Mei L; Chong L; Huang Y; Li Y; Chu M; Yang X Life Sci; 2016 Jan; 145():121-6. PubMed ID: 26706286 [TBL] [Abstract][Full Text] [Related]
9. DUSP14 knockout accelerates cardiac ischemia reperfusion (IR) injury through activating NF-κB and MAPKs signaling pathways modulated by ROS generation. Lin B; Xu J; Feng DG; Wang F; Wang JX; Zhao H Biochem Biophys Res Commun; 2018 Jun; 501(1):24-32. PubMed ID: 29660332 [TBL] [Abstract][Full Text] [Related]
10. Myricetin Alleviates Pathological Cardiac Hypertrophy via TRAF6/TAK1/MAPK and Nrf2 Signaling Pathway. Liao HH; Zhang N; Meng YY; Feng H; Yang JJ; Li WJ; Chen S; Wu HM; Deng W; Tang QZ Oxid Med Cell Longev; 2019; 2019():6304058. PubMed ID: 31885808 [TBL] [Abstract][Full Text] [Related]
11. TRAF2-mediated Lys63-linked ubiquitination of DUSP14/MKP6 is essential for its phosphatase activity. Yang CY; Chiu LL; Tan TH Cell Signal; 2016 Jan; 28(1):145-51. PubMed ID: 26521044 [TBL] [Abstract][Full Text] [Related]
12. Ubiquitin-specific protease 19 blunts pathological cardiac hypertrophy via inhibition of the TAK1-dependent pathway. Miao R; Lu Y; He X; Liu X; Chen Z; Wang J J Cell Mol Med; 2020 Sep; 24(18):10946-10957. PubMed ID: 32798288 [TBL] [Abstract][Full Text] [Related]
13. Novel role of mitochondrial GTPases 1 in pathological cardiac hypertrophy. Xu D; Zhao Y; Weng X; Lu Y; Li W; Tang K; Chen W; Liu Z; Qi X; Zheng J; Fassett J; Zhang Y; Xu Y J Mol Cell Cardiol; 2019 Mar; 128():105-116. PubMed ID: 30707992 [TBL] [Abstract][Full Text] [Related]
14. Tripartite Motif 8 Contributes to Pathological Cardiac Hypertrophy Through Enhancing Transforming Growth Factor β-Activated Kinase 1-Dependent Signaling Pathways. Chen L; Huang J; Ji YX; Mei F; Wang PX; Deng KQ; Jiang X; Ma G; Li H Hypertension; 2017 Feb; 69(2):249-258. PubMed ID: 27956576 [TBL] [Abstract][Full Text] [Related]
16. Novel role for caspase-activated DNase in the regulation of pathological cardiac hypertrophy. Gao L; Huang K; Jiang DS; Liu X; Huang D; Li H; Zhang XD; Huang K Hypertension; 2015 Apr; 65(4):871-81. PubMed ID: 25646292 [TBL] [Abstract][Full Text] [Related]
17. Activation of Dusp14 protects against osteoclast generation and bone loss by regulating AMPKα-dependent manner. Hong L; Ai J; Ma D Biochem Biophys Res Commun; 2019 Nov; 519(3):445-452. PubMed ID: 31526569 [TBL] [Abstract][Full Text] [Related]
18. TBC1D25 Regulates Cardiac Remodeling Through TAK1 Signaling Pathway. Guo S; Liu Y; Gao L; Xiao F; Shen J; Xing S; Yang F; Zhang W; Shi Q; Li Y; Zhao L Int J Biol Sci; 2020; 16(8):1335-1348. PubMed ID: 32210723 [TBL] [Abstract][Full Text] [Related]
19. Regulator of G-Protein Signaling 10 Negatively Regulates Cardiac Remodeling by Blocking Mitogen-Activated Protein Kinase-Extracellular Signal-Regulated Protein Kinase 1/2 Signaling. Miao R; Lu Y; Xing X; Li Y; Huang Z; Zhong H; Huang Y; Chen AF; Tang X; Li H; Cai J; Yuan H Hypertension; 2016 Jan; 67(1):86-98. PubMed ID: 26573707 [TBL] [Abstract][Full Text] [Related]
20. Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload. Calamaras TD; Baumgartner RA; Aronovitz MJ; McLaughlin AL; Tam K; Richards DA; Cooper CW; Li N; Baur WE; Qiao X; Wang GR; Davis RJ; Kapur NK; Karas RH; Blanton RM Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H145-H159. PubMed ID: 30362822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]