These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Studies on dehydrogenases of the glucuronate-xylulose cycle in the livers of diabetic mice and rats. Tulsiani DR; Touster O Diabetes; 1979 Sep; 28(9):793-8. PubMed ID: 38160 [TBL] [Abstract][Full Text] [Related]
44. A preliminary account of the properties of recombinant human Glyoxylate reductase (GRHPR), LDHA and LDHB with glyoxylate, and their potential roles in its metabolism. Mdluli K; Booth MP; Brady RL; Rumsby G Biochim Biophys Acta; 2005 Dec; 1753(2):209-16. PubMed ID: 16198644 [TBL] [Abstract][Full Text] [Related]
45. Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. Meng H; Liu P; Sun H; Cai Z; Zhou J; Lin J; Li Y Sci Rep; 2016 Apr; 6():24887. PubMed ID: 27109778 [TBL] [Abstract][Full Text] [Related]
46. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Moritz B; Striegel K; De Graaf AA; Sahm H Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959 [TBL] [Abstract][Full Text] [Related]
47. Purification and characterization of NAD-dependent morphine 6-dehydrogenase from hamster liver cytosol, a new member of the aldo-keto reductase superfamily. Todaka T; Yamano S; Toki S Arch Biochem Biophys; 2000 Feb; 374(2):189-97. PubMed ID: 10666297 [TBL] [Abstract][Full Text] [Related]
48. Purification and some properties of glyoxylate reductase (NADP+) and its functional location in mitochondria in Euglena gracilis z. Yokota A; Haga S; Kitaoka S Biochem J; 1985 Apr; 227(1):211-6. PubMed ID: 3922357 [TBL] [Abstract][Full Text] [Related]
49. Kinetic properties of human placental glucose-6-phosphate dehydrogenase. Ozer N; Aksoy Y; Ogüs IH Int J Biochem Cell Biol; 2001 Mar; 33(3):221-6. PubMed ID: 11311853 [TBL] [Abstract][Full Text] [Related]
50. Biochemical characterization of the 2-ketoacid reductases encoded by ycdW and yiaE genes in Escherichia coli. Nuñez MF; Pellicer MT; Badia J; Aguilar J; Baldoma L Biochem J; 2001 Mar; 354(Pt 3):707-15. PubMed ID: 11237876 [TBL] [Abstract][Full Text] [Related]
51. Purification and kinetic characterization of pickerel liver alcohol dehydrogenase with dual coenzyme specificity. al-Kassim LS; Tsai CS Biochem Cell Biol; 1993; 71(9-10):421-6. PubMed ID: 8192893 [TBL] [Abstract][Full Text] [Related]
52. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274-->Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+. Leitgeb S; Petschacher B; Wilson DK; Nidetzky B FEBS Lett; 2005 Jan; 579(3):763-7. PubMed ID: 15670843 [TBL] [Abstract][Full Text] [Related]
53. NADP+-Preferring D-Lactate Dehydrogenase from Sporolactobacillus inulinus. Zhu L; Xu X; Wang L; Dong H; Yu B; Ma Y Appl Environ Microbiol; 2015 Sep; 81(18):6294-301. PubMed ID: 26150461 [TBL] [Abstract][Full Text] [Related]
54. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875 [TBL] [Abstract][Full Text] [Related]
55. Microsomal reductase for aromatic aldehydes and ketones in guinea pig liver. Purification, characterization, and functional relationship to hexose-6-phosphate dehydrogenase. Sawada H; Hara A; Hayashibara M; Nakayama T; Usui S; Saeki T J Biochem; 1981 Oct; 90(4):1077-85. PubMed ID: 7031045 [TBL] [Abstract][Full Text] [Related]
56. The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase. Bublitz C; Lawler CA Biochem J; 1987 Jul; 245(1):263-7. PubMed ID: 2822015 [TBL] [Abstract][Full Text] [Related]
57. The stereospecificity of hydrogen transfer to NAD(P)+ catalyzed by lactol dehydrogenases. Mostad SB; Helming HL; Groom C; Glasfeld A Biochem Biophys Res Commun; 1997 Apr; 233(3):681-6. PubMed ID: 9168914 [TBL] [Abstract][Full Text] [Related]
58. Catalytic significance of binary enzyme-aldehyde complexes in the liver alcohol dehydrogenase reaction. Andersson P; Kvassman J; Oldén B; Pettersson G Eur J Biochem; 1984 Mar; 139(3):519-27. PubMed ID: 6365555 [TBL] [Abstract][Full Text] [Related]
59. The synthesis of oxylate from hydroxypyruvate by isolated perfused rat liver. The mechanism of hyperoxaluria in L-glyceric aciduria. Liao LL; Richardson KE Biochim Biophys Acta; 1978 Jan; 538(1):76-86. PubMed ID: 620064 [TBL] [Abstract][Full Text] [Related]
60. Purification and characterization of Azotobacter vinelandii glucose-6-phosphate dehydrogenase: dual coenzyme specificity. Anderson BM; Anderson CD Arch Biochem Biophys; 1995 Aug; 321(1):94-100. PubMed ID: 7639541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]