These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26891776)

  • 1. Spatially resolved TiOx phases in switched RRAM devices using soft X-ray spectromicroscopy.
    Carta D; Hitchcock AP; Guttmann P; Regoutz A; Khiat A; Serb A; Gupta I; Prodromakis T
    Sci Rep; 2016 Feb; 6():21525. PubMed ID: 26891776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devices.
    Carta D; Guttmann P; Regoutz A; Khiat A; Serb A; Gupta I; Mehonic A; Buckwell M; Hudziak S; Kenyon AJ; Prodromakis T
    Nanotechnology; 2016 Aug; 27(34):345705. PubMed ID: 27420908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Power Resistive Switching Characteristic in HfO
    Ding X; Feng Y; Huang P; Liu L; Kang J
    Nanoscale Res Lett; 2019 May; 14(1):157. PubMed ID: 31073774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions.
    Huang YJ; Chao SC; Lien DH; Wen CY; He JH; Lee SC
    Sci Rep; 2016 Apr; 6():23945. PubMed ID: 27052322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the Switching Mechanism in TiO2-Based RRAM: A Two-Dimensional EDX Approach.
    Carta D; Salaoru I; Khiat A; Regoutz A; Mitterbauer C; Harrison NM; Prodromakis T
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19605-11. PubMed ID: 27409358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS.
    Strachan JP; Joshua Yang J; Münstermann R; Scholl A; Medeiros-Ribeiro G; Stewart DR; Stanley Williams R
    Nanotechnology; 2009 Dec; 20(48):485701. PubMed ID: 19880979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer.
    Li Y; Long S; Lv H; Liu Q; Wang Y; Zhang S; Lian W; Wang M; Zhang K; Xie H; Liu S; Liu M
    Nanotechnology; 2011 Jun; 22(25):254028. PubMed ID: 21572216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices.
    Yao IC; Lee DY; Tseng TY; Lin P
    Nanotechnology; 2012 Apr; 23(14):145201. PubMed ID: 22433578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced Complementary Resistive Switching in Forming-Free TiO
    Srivastava S; Thomas JP; Guan X; Leung KT
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43022-43029. PubMed ID: 34463478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly conductive nano-sized Magnéli phases titanium oxide (TiO
    Arif AF; Balgis R; Ogi T; Iskandar F; Kinoshita A; Nakamura K; Okuyama K
    Sci Rep; 2017 Jun; 7(1):3646. PubMed ID: 28623278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored nanoplateau and nanochannel structures using solution-processed rutile TiO
    Abbas Y; Ambade RB; Ambade SB; Han TH; Choi C
    Nanoscale; 2019 Aug; 11(29):13815-13823. PubMed ID: 31294735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Single-Active-Layer Memristor Based on an Ultrananocrystalline Oxygen-Deficient TiO
    Srivastava S; Thomas JP; Heinig NF; Leung KT
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36989-36996. PubMed ID: 28975787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.
    Nho HW; Kim JY; Wang J; Shin HJ; Choi SY; Yoon TH
    J Synchrotron Radiat; 2014 Jan; 21(Pt 1):170-6. PubMed ID: 24365933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topotactic Phase Transition Driving Memristive Behavior.
    Nallagatla VR; Heisig T; Baeumer C; Feyer V; Jugovac M; Zamborlini G; Schneider CM; Waser R; Kim M; Jung CU; Dittmann R
    Adv Mater; 2019 Oct; 31(40):e1903391. PubMed ID: 31441160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-level characteristics of TiO
    Kwon S; Kim MJ; Chung KB
    Sci Rep; 2021 May; 11(1):9883. PubMed ID: 33972612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ control of oxygen vacancies in TiO₂ by atomic layer deposition for resistive switching devices.
    Park SJ; Lee JP; Jang JS; Rhu H; Yu H; You BY; Kim CS; Kim KJ; Cho YJ; Baik S; Lee W
    Nanotechnology; 2013 Jul; 24(29):295202. PubMed ID: 23799660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistive Switching of Individual, Chemically Synthesized TiO2 Nanoparticles.
    Schmidt DO; Hoffmann-Eifert S; Zhang H; La Torre C; Besmehn A; Noyong M; Waser R; Simon U
    Small; 2015 Dec; 11(48):6444-56. PubMed ID: 26540646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrical characterisation methodology for identifying the switching mechanism in TiO
    Michalas L; Stathopoulos S; Khiat A; Prodromakis T
    Sci Rep; 2019 Jun; 9(1):8168. PubMed ID: 31160619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method.
    Hu W; Zou L; Chen X; Qin N; Li S; Bao D
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5012-7. PubMed ID: 24635893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.