These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2689201)

  • 1. Kinetic analysis and simulation of glucose transport in plasma membrane vesicles of glucose-repressed and derepressed Saccharomyces cerevisiae cells.
    Fuhrmann GF; Völker B; Sander S; Potthast M
    Experientia; 1989 Dec; 45(11-12):1018-23. PubMed ID: 2689201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae.
    Sutherland FC; Lages F; Lucas C; Luyten K; Albertyn J; Hohmann S; Prior BA; Kilian SG
    J Bacteriol; 1997 Dec; 179(24):7790-5. PubMed ID: 9401039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters.
    Maier A; Völker B; Boles E; Fuhrmann GF
    FEMS Yeast Res; 2002 Dec; 2(4):539-50. PubMed ID: 12702270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose transport in a kinaseless Saccharomyces cerevisiae mutant.
    Lang JM; Cirillo VP
    J Bacteriol; 1987 Jul; 169(7):2932-7. PubMed ID: 3298207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae.
    Coons DM; Boulton RB; Bisson LF
    J Bacteriol; 1995 Jun; 177(11):3251-8. PubMed ID: 7768825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots.
    Fuhrmann GF; Völker B
    Biochim Biophys Acta; 1993 Jan; 1145(1):180-2. PubMed ID: 8422410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion.
    Gamo FJ; Moreno E; Lagunas R
    Yeast; 1995 Nov; 11(14):1393-8. PubMed ID: 8585322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose.
    Walsh MC; Smits HP; Scholte M; van Dam K
    J Bacteriol; 1994 Feb; 176(4):953-8. PubMed ID: 8106337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar transport and potassium permeability in yeast plasma membrane vesicles.
    Fuhrmann GF; Boehm C; Theuvenet AP
    Biochim Biophys Acta; 1976 May; 433(3):583-96. PubMed ID: 776224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of hexose uptake in Saccharomyces cerevisiae cultivated in continuous culture.
    Meijer MM; Boonstra J; Verkleij AJ; Verrips CT
    Biochim Biophys Acta; 1996 Dec; 1277(3):209-16. PubMed ID: 8982387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of D-galactose transport systems by luminal membrane vesicles from rabbit kidney.
    Røigaard-Petersen H; Jacobsen C; Sheikh MI
    Biochim Biophys Acta; 1986 Apr; 856(3):578-84. PubMed ID: 3964698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally.
    Wendell DL; Bisson LF
    J Bacteriol; 1994 Jun; 176(12):3730-7. PubMed ID: 8206851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar transport in Saccharomyces cerevisiae.
    Lagunas R
    FEMS Microbiol Rev; 1993 Apr; 10(3-4):229-42. PubMed ID: 8318258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of glucose uptake in Saccharomyces cerevisiae.
    Gonçalves T; Loureiro-Dias MC
    J Bacteriol; 1994 Mar; 176(5):1511-3. PubMed ID: 8113192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose transport activity in isolated plasma membrane vesicles from Saccharomyces cerevisiae.
    Franzusoff AJ; Cirillo VP
    J Biol Chem; 1983 Mar; 258(6):3608-14. PubMed ID: 6339489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and transport-associated phosphorylation of galactose in Saccharomyces cerevisiae.
    van Steveninck J
    Biochim Biophys Acta; 1972 Aug; 274(2):575-83. PubMed ID: 4558852
    [No Abstract]   [Full Text] [Related]  

  • 18. Contribution to the physiological characterization of glycerol active uptake in Saccharomyces cerevisiae.
    Lages F; Lucas C
    Biochim Biophys Acta; 1997 Nov; 1322(1):8-18. PubMed ID: 9398075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation and interconversion of the potassium transport systems of Saccharomyces cerevisiae as revealed by rubidium transport.
    Ramos J; Rodríguez-Navarro A
    Eur J Biochem; 1986 Jan; 154(2):307-11. PubMed ID: 3510870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Ca2+ influx by metabolic substrates in Saccharomyces cerevisiae: role of membrane potential and cellular ATP levels.
    Eilam Y; Othman M
    J Gen Microbiol; 1990 May; 136(5):861-6. PubMed ID: 2199605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.