These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 26892015)

  • 1. Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors.
    Sart S; Agathos SN
    Methods Mol Biol; 2016; 1502():87-102. PubMed ID: 26892015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor.
    Tsai AC; Ma T
    Methods Mol Biol; 2016; 1502():77-86. PubMed ID: 27032950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors.
    Rafiq QA; Coopman K; Nienow AW; Hewitt CJ
    Biotechnol J; 2016 Mar; 11(4):473-86. PubMed ID: 26632496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems.
    Fernandes-Platzgummer A; Carmelo JG; da Silva CL; Cabral JM
    Methods Mol Biol; 2016; 1416():375-88. PubMed ID: 27236684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors.
    Sart S; Errachid A; Schneider YJ; Agathos SN
    J Tissue Eng Regen Med; 2013 Jul; 7(7):537-51. PubMed ID: 22383400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture.
    Yuan Y; Kallos MS; Hunter C; Sen A
    J Tissue Eng Regen Med; 2014 Mar; 8(3):210-25. PubMed ID: 22689330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue.
    Carmelo JG; Fernandes-Platzgummer A; Diogo MM; da Silva CL; Cabral JM
    Biotechnol J; 2015 Aug; 10(8):1235-47. PubMed ID: 26136376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-confluent culture of human mesenchymal stromal cells on biodegradable polycaprolactone microcarriers enhances bone healing of rat calvarial defect.
    Lam AT; Sim EJ; Shekaran A; Li J; Teo KL; Goggi JL; Reuveny S; Birch WR; Oh SK
    Cytotherapy; 2019 Jun; 21(6):631-642. PubMed ID: 30975604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells.
    Mizukami A; Fernandes-Platzgummer A; Carmelo JG; Swiech K; Covas DT; Cabral JM; da Silva CL
    Biotechnol J; 2016 Aug; 11(8):1048-59. PubMed ID: 27168373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.
    Dos Santos F; Campbell A; Fernandes-Platzgummer A; Andrade PZ; Gimble JM; Wen Y; Boucher S; Vemuri MC; da Silva CL; Cabral JM
    Biotechnol Bioeng; 2014 Jun; 111(6):1116-27. PubMed ID: 24420557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors.
    Hupfeld J; Gorr IH; Schwald C; Beaucamp N; Wiechmann K; Kuentzer K; Huss R; Rieger B; Neubauer M; Wegmeyer H
    Biotechnol Bioeng; 2014 Nov; 111(11):2290-302. PubMed ID: 24890974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable ex vivo expansion of human mesenchymal stem/stromal cells in microcarrier-based stirred culture systems.
    Carmelo JG; Fernandes-Platzgummer A; Cabral JM; da Silva CL
    Methods Mol Biol; 2015; 1283():147-59. PubMed ID: 25063496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension.
    Fan Y; Hsiung M; Cheng C; Tzanakakis ES
    Tissue Eng Part A; 2014 Feb; 20(3-4):588-99. PubMed ID: 24098972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells.
    de Soure AM; Fernandes-Platzgummer A; Moreira F; Lilaia C; Liu SH; Ku CP; Huang YF; Milligan W; Cabral JMS; da Silva CL
    J Tissue Eng Regen Med; 2017 May; 11(5):1630-1640. PubMed ID: 27444977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofunctionalization of Cellulose Microcarriers Using a Carbohydrate Binding Module Linked with Fibroblast Growth Factor for the Expansion of Human Umbilical Mesenchymal Stromal Cells in Stirred Suspension Bioreactors.
    Abraham BD; Gysel E; Kallos MS; Hu J
    ACS Appl Bio Mater; 2024 Sep; 7(9):5956-5964. PubMed ID: 39190068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers.
    Shekaran A; Sim E; Tan KY; Chan JK; Choolani M; Reuveny S; Oh S
    BMC Biotechnol; 2015 Oct; 15():102. PubMed ID: 26520400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors.
    Lam AT; Li J; Toh JP; Sim EJ; Chen AK; Chan JK; Choolani M; Reuveny S; Birch WR; Oh SK
    Cytotherapy; 2017 Mar; 19(3):419-432. PubMed ID: 28017598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion.
    Yan X; Zhang K; Yang Y; Deng D; Lyu C; Xu H; Liu W; Du Y
    Tissue Eng Part C Methods; 2020 May; 26(5):263-275. PubMed ID: 32268824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system.
    Rojewski MT; Fekete N; Baila S; Nguyen K; Fürst D; Antwiler D; Dausend J; Kreja L; Ignatius A; Sensebé L; Schrezenmeier H
    Cell Transplant; 2013; 22(11):1981-2000. PubMed ID: 23107560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system.
    Mizukami A; Orellana MD; Caruso SR; de Lima Prata K; Covas DT; Swiech K
    Biotechnol Prog; 2013; 29(2):568-72. PubMed ID: 23420706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.