These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26892189)

  • 1. Musculoskeletal architecture of the prey capture apparatus in salamandrid newts with multiphasic lifestyle: does anatomy change during the seasonal habitat switches?
    Heiss E; Handschuh S; Aerts P; Van Wassenbergh S
    J Anat; 2016 May; 228(5):757-70. PubMed ID: 26892189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the amphibious food uptake and prey manipulation behavior in the Balkan-Anatolian crested newt (Triturus ivanbureschi, Arntzen and Wielstra, 2013).
    Lukanov S; Tzankov N; Handschuh S; Heiss E; Naumov B; Natchev N
    Zoology (Jena); 2016 Jun; 119(3):224-231. PubMed ID: 27013264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexibility is everything: prey capture throughout the seasonal habitat switches in the smooth newt
    Heiss E; Aerts P; Van Wassenbergh S
    Org Divers Evol; 2015; 15(1):127-142. PubMed ID: 26097413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Masters of change: seasonal plasticity in the prey-capture behavior of the Alpine newt Ichthyosaura alpestris (Salamandridae).
    Heiss E; Aerts P; Van Wassenbergh S
    J Exp Biol; 2013 Dec; 216(Pt 23):4426-34. PubMed ID: 24259258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts.
    Van Wassenbergh S; Heiss E
    Sci Rep; 2016 Jul; 6():29277. PubMed ID: 27383663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional morphology of terrestrial prey capture in salamandrid salamanders.
    Stinson CM; Deban SM
    J Exp Biol; 2017 Nov; 220(Pt 21):3896-3907. PubMed ID: 29093187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tongue for all seasons: extreme phenotypic flexibility in salamandrid newts.
    Heiss E; Handschuh S; Aerts P; Van Wassenbergh S
    Sci Rep; 2017 Apr; 7(1):1006. PubMed ID: 28432290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional trade-offs in the aquatic feeding performance of salamanders.
    Stinson CM; Deban SM
    Zoology (Jena); 2017 Dec; 125():69-78. PubMed ID: 28893437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogenetic plasticity in cranial morphology is associated with a change in the food processing behavior in Alpine newts.
    Schwarz D; Konow N; Porro LB; Heiss E
    Front Zool; 2020 Nov; 17(1):34. PubMed ID: 33292303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dining dichotomy: aquatic and terrestrial prey capture behavior in the Himalayan newt Tylototriton verrucosus.
    Heiss E; De Vylder M
    Biol Open; 2016 Oct; 5(10):1500-1507. PubMed ID: 27612510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Same but different: aquatic prey capture in paedomorphic and metamorphic Alpine newts.
    Heiss E; Grell J
    Zoological Lett; 2019; 5():24. PubMed ID: 31372238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility of intraoral food processing in the salamandrid newt
    Schwarz D; Gorb SN; Kovalev A; Konow N; Heiss E
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 32968002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation.
    Werth AJ
    Anat Rec (Hoboken); 2007 Jun; 290(6):546-68. PubMed ID: 17516444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional anatomy and kinematics of the oral jaw system during terrestrial feeding in Periophthalmus barbarus.
    Michel KB; Adriaens D; Aerts P; Dierick M; Wassenbergh SV
    J Morphol; 2014 Oct; 275(10):1145-60. PubMed ID: 24797381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital dissection of the head of the frogs Calyptocephalella gayi and Leptodactylus pentadactylus with emphasis on the feeding apparatus.
    Kunisch S; Blüml V; Schwaha T; Beisser CJ; Handschuh S; Lemell P
    J Anat; 2021 Aug; 239(2):391-404. PubMed ID: 33713453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyoid skeleton, its related muscles, and morphological novelties in the frog Lepidobatrachus (anura, ceratophryidae).
    Fabrezi M; Lobo F
    Anat Rec (Hoboken); 2009 Nov; 292(11):1700-12. PubMed ID: 19876955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomy, function, and evolution of jaw and hyobranchial muscles in cryptobranchoid salamander larvae.
    Kleinteich T; Herzen J; Beckmann F; Matsui M; Haas A
    J Morphol; 2014 Feb; 275(2):230-46. PubMed ID: 24136411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial feeding in the teiid lizard Tupinambis merianae: the effect of prey size on the movements of hyolingual apparatus and the cranio-cervical system.
    Montuelle SJ; Herrel A; Schaerlaeken V; Metzger KA; Mutuyeyezu A; Bels VL
    J Exp Biol; 2009 Aug; 212(Pt 16):2501-10. PubMed ID: 19648393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquatic-terrestrial transitions of feeding systems in vertebrates: a mechanical perspective.
    Heiss E; Aerts P; Van Wassenbergh S
    J Exp Biol; 2018 Apr; 221(Pt 8):. PubMed ID: 29695537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond Suction-Feeding Fishes: Identifying New Approaches to Performance Integration During Prey Capture in Aquatic Vertebrates.
    Kane EA; Cohen HE; Hicks WR; Mahoney ER; Marshall CD
    Integr Comp Biol; 2019 Aug; 59(2):456-472. PubMed ID: 31225594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.