These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26892190)

  • 1. Dramatic pressure-driven enhancement of bulk skyrmion stability.
    Levatić I; Popčević P; Šurija V; Kruchkov A; Berger H; Magrez A; White JS; Rønnow HM; Živković I
    Sci Rep; 2016 Feb; 6():21347. PubMed ID: 26892190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound.
    Okamura Y; Kagawa F; Seki S; Tokura Y
    Nat Commun; 2016 Sep; 7():12669. PubMed ID: 27580648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3.
    White JS; Prša K; Huang P; Omrani AA; Zivković I; Bartkowiak M; Berger H; Magrez A; Gavilano JL; Nagy G; Zang J; Rønnow HM
    Phys Rev Lett; 2014 Sep; 113(10):107203. PubMed ID: 25238382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature skyrmion phase in bulk Cu
    Deng L; Wu HC; Litvinchuk AP; Yuan NFQ; Lee JJ; Dahal R; Berger H; Yang HD; Chu CW
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8783-8787. PubMed ID: 32241892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skyrmion Lattice Topological Hall Effect near Room Temperature.
    Leroux M; Stolt MJ; Jin S; Pete DV; Reichhardt C; Maiorov B
    Sci Rep; 2018 Oct; 8(1):15510. PubMed ID: 30341339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetoelectric effects in the skyrmion host material Cu2OSeO3.
    Ruff E; Lunkenheimer P; Loidl A; Berger H; Krohns S
    Sci Rep; 2015 Oct; 5():15025. PubMed ID: 26446514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films.
    Je SG; Vallobra P; Srivastava T; Rojas-Sánchez JC; Pham TH; Hehn M; Malinowski G; Baraduc C; Auffret S; Gaudin G; Mangin S; Béa H; Boulle O
    Nano Lett; 2018 Nov; 18(11):7362-7371. PubMed ID: 30295499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolated skyrmion, skyrmion lattice and antiskyrmion lattice creation through magnetization reversal in Co/Pd nanostructure.
    Kandukuri S; Murthy VSN; Thiruvikraman PK
    Sci Rep; 2021 Sep; 11(1):18945. PubMed ID: 34556719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet.
    Peng L; Karube K; Taguchi Y; Nagaosa N; Tokura Y; Yu X
    Nat Commun; 2021 Nov; 12(1):6797. PubMed ID: 34819505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfigurable Skyrmion Logic Gates.
    Luo S; Song M; Li X; Zhang Y; Hong J; Yang X; Zou X; Xu N; You L
    Nano Lett; 2018 Feb; 18(2):1180-1184. PubMed ID: 29350935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Disordered above Room Temperature Skyrmion Material Co
    Henderson ME; Beare J; Sharma S; Bleuel M; Clancy P; Cory DG; Huber MG; Marjerrison CA; Pula M; Sarenac D; Smith EM; Zhernenkov K; Luke GM; Pushin DA
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy.
    Rajeswari J; Huang P; Mancini GF; Murooka Y; Latychevskaia T; McGrouther D; Cantoni M; Baldini E; White JS; Magrez A; Giamarchi T; Rønnow HM; Carbone F
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14212-7. PubMed ID: 26578765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation.
    Zhang X; Zhou Y; Ezawa M
    Sci Rep; 2016 Apr; 6():24795. PubMed ID: 27099125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling, rotation, and channeling behavior of helical and skyrmion spin textures in thin films of Te-doped Cu
    Han MG; Garlow JA; Kharkov Y; Camacho L; Rov R; Sauceda J; Vats G; Kisslinger K; Kato T; Sushkov O; Zhu Y; Ulrich C; Söhnel T; Seidel J
    Sci Adv; 2020 Mar; 6(13):eaax2138. PubMed ID: 32258389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skyrmion lattice structural transition in MnSi.
    Nakajima T; Oike H; Kikkawa A; Gilbert EP; Booth N; Kakurai K; Taguchi Y; Tokura Y; Kagawa F; Arima TH
    Sci Adv; 2017 Jun; 3(6):e1602562. PubMed ID: 28630906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field control of the skyrmion lattice in Cu2OSeO3.
    White JS; Levatić I; Omrani AA; Egetenmeyer N; Prša K; Zivković I; Gavilano JL; Kohlbrecher J; Bartkowiak M; Berger H; Rønnow HM
    J Phys Condens Matter; 2012 Oct; 24(43):432201. PubMed ID: 23032155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle-size dependent structural transformation of skyrmion lattice.
    Takagi R; Yamasaki Y; Yokouchi T; Ukleev V; Yokoyama Y; Nakao H; Arima T; Tokura Y; Seki S
    Nat Commun; 2020 Nov; 11(1):5685. PubMed ID: 33177528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skyrmion-Anti-Skyrmion Pair Creation by in-Plane Currents.
    Stier M; Häusler W; Posske T; Gurski G; Thorwart M
    Phys Rev Lett; 2017 Jun; 118(26):267203. PubMed ID: 28707922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles.
    Dohi T; DuttaGupta S; Fukami S; Ohno H
    Nat Commun; 2019 Nov; 10(1):5153. PubMed ID: 31727895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spin structures of interlayer coupled magnetic films with opposite chirality.
    Kang SP; Kim NJ; Kwon HY; Choi JW; Min BC; Won C
    Sci Rep; 2018 Feb; 8(1):2361. PubMed ID: 29402938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.