These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 26892456)

  • 1. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.
    Awojoyogbe BO; Dada MO; Onwu SO; Ige TA; Akinwande NI
    J Med Syst; 2016 Apr; 40(4):106. PubMed ID: 26892456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion.
    Dada MO; Jayeoba B; Awojoyogbe BO; Uno UE; Awe OE
    J Med Syst; 2017 Sep; 41(10):168. PubMed ID: 28905174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion-weighted MR of the brain: methodology and clinical application.
    Mascalchi M; Filippi M; Floris R; Fonda C; Gasparotti R; Villari N
    Radiol Med; 2005 Mar; 109(3):155-97. PubMed ID: 15775887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure?
    Yu Q; Reutens D; Vegh V
    Neuroimage; 2018 Jul; 175():122-137. PubMed ID: 29609006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus.
    Gao Q; Srinivasan G; Magin RL; Zhou XJ
    J Magn Reson Imaging; 2011 May; 33(5):1177-83. PubMed ID: 21509877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical computation of the diffusion MRI signal of realistic neurons based on Laplace eigenfunctions.
    Li JR; Tran TN; Nguyen VD
    NMR Biomed; 2020 Oct; 33(10):e4353. PubMed ID: 32725935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The derivation of homogenized diffusion kurtosis models for diffusion MRI.
    Haddar H; Kchaou M; Moakher M
    J Magn Reson; 2019 Jan; 298():48-57. PubMed ID: 30529049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The generalized Stejskal-Tanner equation for non-uniform magnetic field gradients.
    Borkowski K; Krzyżak AT
    J Magn Reson; 2018 Nov; 296():23-28. PubMed ID: 30195715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.
    Alomair OI; Brereton IM; Smith MT; Galloway GJ; Kurniawan ND
    PLoS One; 2015; 10(6):e0130133. PubMed ID: 26110770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of diffusion MRI signals using an adaptive time-stepping method.
    Li JR; Calhoun D; Poupon C; Le Bihan D
    Phys Med Biol; 2014 Jan; 59(2):441-54. PubMed ID: 24351275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module.
    Fang C; Nguyen VD; Wassermann D; Li JR
    Neuroimage; 2020 Nov; 222():117198. PubMed ID: 32730957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of a macroscopic finite pulse model of the diffusion MRI signal.
    Li JR; Nguyen HT; Nguyen DV; Haddar H; Coatléven J; Le Bihan D
    J Magn Reson; 2014 Nov; 248():54-65. PubMed ID: 25314082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent diffusion coefficient measured by diffusion MRI of moving and deforming domains.
    Mekkaoui I; Pousin J; Hesthaven J; Li JR
    J Magn Reson; 2020 Sep; 318():106809. PubMed ID: 32862079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SpinDoctor: A MATLAB toolbox for diffusion MRI simulation.
    Li JR; Nguyen VD; Tran TN; Valdman J; Trang CB; Nguyen KV; Vu DTS; Tran HA; Tran HTA; Nguyen TMP
    Neuroimage; 2019 Nov; 202():116120. PubMed ID: 31470126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation.
    Magin RL; Abdullah O; Baleanu D; Zhou XJ
    J Magn Reson; 2008 Feb; 190(2):255-70. PubMed ID: 18065249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of MR flow imaging by the lattice Boltzmann method and Bloch equation.
    Jurczuk K; Kretowski M; Bellanger JJ; Eliat PA; Saint-Jalmes H; Bézy-Wendling J
    Magn Reson Imaging; 2013 Sep; 31(7):1163-73. PubMed ID: 23711475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized order mixture model for tracing connectivity of white matter fascicles complexity in brain from diffusion MRI.
    Puri A; Kumar S
    Math Med Biol; 2023 Sep; 40(3):223-237. PubMed ID: 37038323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion.
    Hanyga A; Seredyńska M
    J Magn Reson; 2012 Jul; 220():85-93. PubMed ID: 22706028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient simulation of magnetic resonance imaging with Bloch-Torrey equations using intra-voxel magnetization gradients.
    Jochimsen TH; Schäfer A; Bammer R; Moseley ME
    J Magn Reson; 2006 May; 180(1):29-38. PubMed ID: 16434221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous magnetic resonance imaging of diffusion anisotropy and diffusion gradient.
    Huang J; Zhu DC
    Magn Reson Imaging; 2008 Apr; 26(3):337-46. PubMed ID: 18093778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.