BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26892754)

  • 1. Resonance assignment of an engineered amino-terminal domain of a major ampullate spider silk with neutralized charge cluster.
    Schaal D; Bauer J; Schweimer K; Scheibel T; Rösch P; Schwarzinger S
    Biomol NMR Assign; 2016 Apr; 10(1):199-202. PubMed ID: 26892754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders' Major Ampullate Spidroin 1.
    Bauer J; Schaal D; Eisoldt L; Schweimer K; Schwarzinger S; Scheibel T
    Sci Rep; 2016 Sep; 6():34442. PubMed ID: 27681031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR assignment and dynamics of the dimeric form of soluble C-terminal domain major ampullate spidroin 2 from Latrodectus hesperus.
    Oktaviani NA; Malay AD; Goto M; Nagashima T; Hayashi F; Numata K
    Biomol NMR Assign; 2023 Dec; 17(2):249-255. PubMed ID: 37668860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dimerization mechanism of the N-terminal domain of spider silk proteins is conserved despite extensive sequence divergence.
    Sarr M; Kitoka K; Walsh-White KA; Kaldmäe M; Metlāns R; Tārs K; Mantese A; Shah D; Landreh M; Rising A; Johansson J; Jaudzems K; Kronqvist N
    J Biol Chem; 2022 May; 298(5):101913. PubMed ID: 35398358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay.
    Askarieh G; Hedhammar M; Nordling K; Saenz A; Casals C; Rising A; Johansson J; Knight SD
    Nature; 2010 May; 465(7295):236-8. PubMed ID: 20463740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s).
    Thamm C; Scheibel T
    Biomacromolecules; 2017 Apr; 18(4):1365-1372. PubMed ID: 28233980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nearly complete
    Oktaviani NA; Malay AD; Matsugami A; Hayashi F; Numata K
    Biomol NMR Assign; 2020 Oct; 14(2):335-338. PubMed ID: 32767002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Impact of Acidification on Spider Silk Assembly Kinetics.
    Xu D; Guo C; Holland GP
    Biomacromolecules; 2015 Jul; 16(7):2072-9. PubMed ID: 26030517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversified Structural Basis of a Conserved Molecular Mechanism for pH-Dependent Dimerization in Spider Silk N-Terminal Domains.
    Otikovs M; Chen G; Nordling K; Landreh M; Meng Q; Jörnvall H; Kronqvist N; Rising A; Johansson J; Jaudzems K
    Chembiochem; 2015 Aug; 16(12):1720-4. PubMed ID: 26033527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state NMR comparison of various spiders' dragline silk fiber.
    Creager MS; Jenkins JE; Thagard-Yeaman LA; Brooks AE; Jones JA; Lewis RV; Holland GP; Yarger JL
    Biomacromolecules; 2010 Aug; 11(8):2039-43. PubMed ID: 20593757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers.
    Chaw RC; Correa-Garhwal SM; Clarke TH; Ayoub NA; Hayashi CY
    J Proteome Res; 2015 Oct; 14(10):4223-31. PubMed ID: 26302244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus.
    Lawrence BA; Vierra CA; Moore AM
    Biomacromolecules; 2004; 5(3):689-95. PubMed ID: 15132648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Stability and Interplay of Helical N- and C-Terminal Domains with Implications on Major Ampullate Spidroin Assembly.
    Bauer J; Scheibel T
    Biomacromolecules; 2017 Mar; 18(3):835-845. PubMed ID: 28128547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks.
    Blamires SJ; Kasumovic MM; Tso IM; Martens PJ; Hook JM; Rawal A
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly.
    Gaines WA; Sehorn MG; Marcotte WR
    J Biol Chem; 2010 Dec; 285(52):40745-53. PubMed ID: 20959449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR assignments of a dynamically perturbed and dimerization inhibited N-terminal domain variant of a spider silk protein from E. australis.
    Goretzki B; Heiby JC; Hacker C; Neuweiler H; Hellmich UA
    Biomol NMR Assign; 2020 Apr; 14(1):67-71. PubMed ID: 31786743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins.
    Motriuk-Smith D; Smith A; Hayashi CY; Lewis RV
    Biomacromolecules; 2005; 6(6):3152-9. PubMed ID: 16283740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes.
    Gaines WA; Marcotte WR
    Insect Mol Biol; 2008 Sep; 17(5):465-74. PubMed ID: 18828837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk gene expression of theridiid spiders: implications for male-specific silk use.
    Correa-Garhwal SM; Chaw RC; Clarke TH; Ayoub NA; Hayashi CY
    Zoology (Jena); 2017 Jun; 122():107-114. PubMed ID: 28536006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.