These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26892899)

  • 1. Sagittal rotational stiffness and damping increase in a porcine lumbar spine with increased or prolonged loading.
    Zondervan RL; Popovich JM; Radcliffe CJ; Pathak PK; Reeves NP
    J Biomech; 2016 Feb; 49(4):624-7. PubMed ID: 26892899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dynamic flexion/extension properties of the lumbar spine in vitro using a novel pendulum system.
    Crisco JJ; Fujita L; Spenciner DB
    J Biomech; 2007; 40(12):2767-73. PubMed ID: 17367798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic biomechanical examination of the lumbar spine with implanted total disc replacement using a pendulum testing system.
    Daniels AH; Paller DJ; Koruprolu S; McDonnell M; Palumbo MA; Crisco JJ
    Spine (Phila Pa 1976); 2012 Nov; 37(23):E1438-43. PubMed ID: 22869057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine.
    Wang W; Wang D; De Groote F; Scheys L; Jonkers I
    J Biomech; 2020 Jan; 98():109437. PubMed ID: 31679758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of unstable loading versus unstable support conditions on spine rotational stiffness and spine stability during repetitive lifting.
    Beaudette SM; Graham RB; Brown SH
    J Biomech; 2014 Jan; 47(2):491-6. PubMed ID: 24287401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the torsional stiffness of the lumbar spine in flexion and extension.
    Garges KJ; Nourbakhsh A; Morris R; Yang J; Mody M; Patterson R
    J Manipulative Physiol Ther; 2008 Oct; 31(8):563-9. PubMed ID: 18984238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Posture on the Mechanical Properties of a Functional Spinal Unit During Cyclic Compressive Loading.
    Barrett JM; Gooyers CE; Karakolis T; Callaghan JP
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27322199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of physiological loading using a dynamic, multi-axis spine simulator.
    Holsgrove TP; Miles AW; Gheduzzi S
    Med Eng Phys; 2017 Mar; 41():74-80. PubMed ID: 28043781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Needle puncture in rabbit functional spinal units alters rotational biomechanics.
    Hartman RA; Bell KM; Quan B; Nuzhao Y; Sowa GA; Kang JD
    J Spinal Disord Tech; 2015 Apr; 28(3):E146-53. PubMed ID: 25370985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics.
    Affolter C; Kedzierska J; Vielma T; Weisse B; Aiyangar A
    J Biomech; 2020 Mar; 102():109681. PubMed ID: 32151379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
    Gooyers CE; McMillan RD; Howarth SJ; Callaghan JP
    Spine (Phila Pa 1976); 2012 Aug; 37(17):E1023-9. PubMed ID: 22472807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage.
    Sis HL; Mannen EM; Wong BM; Cadel ES; Bouxsein ML; Anderson DE; Friis EA
    J Biomech; 2016 Oct; 49(14):3252-3259. PubMed ID: 27545081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration.
    Kaigle A; Ekström L; Holm S; Rostedt M; Hansson T
    J Spinal Disord; 1998 Feb; 11(1):65-70. PubMed ID: 9493772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature.
    Stolworthy DK; Zirbel SA; Howell LL; Samuels M; Bowden AE
    Spine J; 2014 May; 14(5):789-98. PubMed ID: 24290312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks.
    Graham RB; Brown SH
    J Biomech; 2012 Jun; 45(9):1593-600. PubMed ID: 22542218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The load on the lumbar spine during asymmetrical bi-manual materials handling.
    Jäger M; Luttmann A
    Ergonomics; 1992; 35(7-8):783-805. PubMed ID: 1633789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.