BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 26893029)

  • 21. Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea.
    Smedowski A; Weglarz B; Tarnawska D; Kaarniranta K; Wylegala E
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):666-73. PubMed ID: 24425850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corneal biomechanical properties in myopic eyes evaluated via Scheimpflug imaging.
    Yu AY; Shao H; Pan A; Wang Q; Huang Z; Song B; McAlinden C; Huang J; Chen S
    BMC Ophthalmol; 2020 Jul; 20(1):279. PubMed ID: 32652982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ocular biomechanical metrics by CorVis ST in healthy Brazilian patients.
    Valbon BF; Ambrósio R; Fontes BM; Luz A; Roberts CJ; Alves MR
    J Refract Surg; 2014 Jul; 30(7):468-73. PubMed ID: 24877553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in ocular biomechanics after femtosecond laser creation of a laser in situ keratomileusis flap.
    Leccisotti A; Fields SV; Moore J; Shah S; Moore TC
    J Cataract Refract Surg; 2016 Jan; 42(1):127-31. PubMed ID: 26948787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a novel Scheimpflug-based non-contact tonometer in healthy subjects and patients with ocular hypertension and glaucoma.
    Reznicek L; Muth D; Kampik A; Neubauer AS; Hirneiss C
    Br J Ophthalmol; 2013 Nov; 97(11):1410-4. PubMed ID: 23969314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corneal Biomechanical Properties in Varying Severities of Myopia.
    Sedaghat MR; Momeni-Moghaddam H; Azimi A; Fakhimi Z; Ziaei M; Danesh Z; Roberts CJ; Monfared N; Jamali A
    Front Bioeng Biotechnol; 2020; 8():595330. PubMed ID: 33553113
    [No Abstract]   [Full Text] [Related]  

  • 27. Ocular blood flow measurements in healthy human myopic eyes.
    Benavente-Pérez A; Hosking SL; Logan NS; Broadway DC
    Graefes Arch Clin Exp Ophthalmol; 2010 Nov; 248(11):1587-94. PubMed ID: 20502909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes.
    Huseynova T; Waring GO; Roberts C; Krueger RR; Tomita M
    Am J Ophthalmol; 2014 Apr; 157(4):885-93. PubMed ID: 24388837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peripheral aberrations in adult hyperopes, emmetropes and myopes.
    Osuagwu UL; Suheimat M; Atchison DA
    Ophthalmic Physiol Opt; 2017 Mar; 37(2):151-159. PubMed ID: 28211176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intraocular pressure measurements in diabetes mellitus.
    Ramm L; Herber R; Spoerl E; Pillunat LE; Terai N
    Eur J Ophthalmol; 2020 Nov; 30(6):1432-1439. PubMed ID: 31779470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anterior eye shape in emmetropes, low to moderate myopes, and high myopes.
    Niyazmand H; Read SA; Atchison DA; Collins MJ
    Cont Lens Anterior Eye; 2021 Aug; 44(4):101361. PubMed ID: 32830067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical properties of the cornea in high myopia.
    Shen M; Fan F; Xue A; Wang J; Zhou X; Lu F
    Vision Res; 2008 Sep; 48(21):2167-71. PubMed ID: 18638498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of diabetes mellitus on Corvis ST measurement process.
    Pérez-Rico C; Gutiérrez-Ortíz C; González-Mesa A; Zandueta AM; Moreno-Salgueiro A; Germain F
    Acta Ophthalmol; 2015 May; 93(3):e193-8. PubMed ID: 25270375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of corneal biomechanics, tonometry and pachymetry with the Corvis ST in myopia.
    Wang X; McAlinden C; Zhang H; Yan J; Wang D; Wei W; Mi S
    Sci Rep; 2021 Feb; 11(1):3041. PubMed ID: 33542296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature.
    Asaoka R; Nakakura S; Tabuchi H; Murata H; Nakao Y; Ihara N; Rimayanti U; Aihara M; Kiuchi Y
    PLoS One; 2015; 10(10):e0140385. PubMed ID: 26485129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intraocular Pressure Changes during Accommodation in Progressing Myopes, Stable Myopes and Emmetropes.
    Liu Y; Lv H; Jiang X; Hu X; Zhang M; Li X
    PLoS One; 2015; 10(10):e0141839. PubMed ID: 26517725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of blur and subsequent adaptation on visual acuity using letter and Landolt C charts: differences between emmetropes and myopes.
    Poulere E; Moschandreas J; Kontadakis GA; Pallikaris IG; Plainis S
    Ophthalmic Physiol Opt; 2013 Mar; 33(2):130-7. PubMed ID: 23297779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of contact lens usage on corneal biomechanical parameters in myopic patients.
    Cankaya AB; Beyazyildiz E; Ileri D; Ozturk F
    Cornea; 2012 Jul; 31(7):764-9. PubMed ID: 22713432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High myopes have lower normalised corneal tangent moduli (less 'stiff' corneas) than low myopes.
    Hon Y; Chen GZ; Lu SH; Lam DC; Lam AK
    Ophthalmic Physiol Opt; 2017 Jan; 37(1):42-50. PubMed ID: 27873338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variability of Corneal Deformation Response in Normal and Keratoconic Eyes.
    Ye C; Yu M; Lai G; Jhanji V
    Optom Vis Sci; 2015 Jul; 92(7):e149-53. PubMed ID: 26002009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.