These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 26893049)
1. Effect of drying and loading methods on the release behavior of ciprofloxacin from starch nanoparticles. Shi A; Li D; Liu H; Adhikari B; Wang Q Int J Biol Macromol; 2016 Jun; 87():55-61. PubMed ID: 26893049 [TBL] [Abstract][Full Text] [Related]
2. Formation of ciprofloxacin nanocrystals within liposomes by spray drying for controlled release via inhalation. Khatib I; Tang P; Ruan J; Cipolla D; Dayton F; Blanchard JD; Chan HK Int J Pharm; 2020 Mar; 578():119045. PubMed ID: 31981702 [TBL] [Abstract][Full Text] [Related]
3. Rheological properties of suspensions containing cross-linked starch nanoparticles prepared by spray and vacuum freeze drying methods. Shi AM; Li D; Wang LJ; Adhikari B Carbohydr Polym; 2012 Nov; 90(4):1732-8. PubMed ID: 22944440 [TBL] [Abstract][Full Text] [Related]
4. Influence of drying processes on the structures, morphology and Wu Z; Zhao M; Zhang W; Yang Z; Xu S; Shang Q J Microencapsul; 2019 Jan; 36(1):21-31. PubMed ID: 30757946 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. Mahmoudi Najafi SH; Baghaie M; Ashori A Int J Biol Macromol; 2016 Jun; 87():48-54. PubMed ID: 26893054 [TBL] [Abstract][Full Text] [Related]
6. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. Bozdag S; Dillen K; Vandervoort J; Ludwig A J Pharm Pharmacol; 2005 Jun; 57(6):699-707. PubMed ID: 15969924 [TBL] [Abstract][Full Text] [Related]
7. Suppression of agglomeration of ciprofloxacin-loaded human serum albumin nanoparticles. Kumar PV; Jain NK AAPS PharmSciTech; 2007 Mar; 8(1):17. PubMed ID: 17408217 [TBL] [Abstract][Full Text] [Related]
8. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties. Shi AM; Wang LJ; Li D; Adhikari B Carbohydr Polym; 2013 Jul; 96(2):593-601. PubMed ID: 23768605 [TBL] [Abstract][Full Text] [Related]
9. Production of dry-state ketoprofen-encapsulated PMMA NPs by coupling micromixer-assisted nanoprecipitation and spray drying. Ding S; Serra CA; Anton N; Yu W; Vandamme TF Int J Pharm; 2019 Mar; 558():1-8. PubMed ID: 30586630 [TBL] [Abstract][Full Text] [Related]
10. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates. Kondo K; Kato S; Niwa T Int J Pharm; 2017 Oct; 532(1):318-327. PubMed ID: 28899765 [TBL] [Abstract][Full Text] [Related]
11. Drug Release and Targeting: the Versatility of Polymethacrylate Nanoparticles for Peroral Administration Revealed by Using an Optimized In Vitro-Toolbox. Beyer S; Moosmann A; Kahnt AS; Ulshöfer T; Parnham MJ; Ferreirós N; Wagner S; Wacker MG Pharm Res; 2015 Dec; 32(12):3986-98. PubMed ID: 26216175 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. El-Naggar ME; El-Rafie MH; El-sheikh MA; El-Feky GS; Hebeish A Int J Biol Macromol; 2015 Nov; 81():718-29. PubMed ID: 26358550 [TBL] [Abstract][Full Text] [Related]
13. Development and characterization of benznidazole nano- and microparticles: A new tool for pediatric treatment of Chagas disease? Seremeta KP; Arrúa EC; Okulik NB; Salomon CJ Colloids Surf B Biointerfaces; 2019 May; 177():169-177. PubMed ID: 30731393 [TBL] [Abstract][Full Text] [Related]
14. A combined technique based on prilling and microwave assisted treatments for the production of ketoprofen controlled release dosage forms. Auriemma G; Del Gaudio P; Barba AA; d'Amore M; Aquino RP Int J Pharm; 2011 Aug; 415(1-2):196-205. PubMed ID: 21679754 [TBL] [Abstract][Full Text] [Related]
15. Preparation, degradation and in vitro release of ciprofloxacin-eluting ureteral stents for potential antibacterial application. Ma X; Xiao Y; Xu H; Lei K; Lang M Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():92-99. PubMed ID: 27207042 [TBL] [Abstract][Full Text] [Related]
16. Use of microreactors and freeze-drying in the manufacturing process of chitosan coated PCL nanoparticles. Zelenková T; Onnainty R; Granero GE; Barresi AA; Fissore D Eur J Pharm Sci; 2018 Jul; 119():135-146. PubMed ID: 29626593 [TBL] [Abstract][Full Text] [Related]
17. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. De Cicco F; Porta A; Sansone F; Aquino RP; Del Gaudio P Int J Pharm; 2014 Oct; 473(1-2):30-7. PubMed ID: 24979533 [TBL] [Abstract][Full Text] [Related]
18. Binder-free dry particulate coating process using a mild vibration field: Effects of glass-transition temperature and powdering method of polymeric coating agents on coating performance. Yasunaga T; Nakamura K; Andoh T; Ichikawa H Int J Pharm; 2019 Apr; 561():206-218. PubMed ID: 30822506 [TBL] [Abstract][Full Text] [Related]
19. Effervescent dry powder for respiratory drug delivery. Ely L; Roa W; Finlay WH; Löbenberg R Eur J Pharm Biopharm; 2007 Mar; 65(3):346-53. PubMed ID: 17156987 [TBL] [Abstract][Full Text] [Related]
20. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. Baelo A; Levato R; Julián E; Crespo A; Astola J; Gavaldà J; Engel E; Mateos-Timoneda MA; Torrents E J Control Release; 2015 Jul; 209():150-8. PubMed ID: 25913364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]