These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 26893175)

  • 1. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors.
    Prezioso M; Merrikh Bayat F; Hoskins B; Likharev K; Strukov D
    Sci Rep; 2016 Feb; 6():21331. PubMed ID: 26893175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
    Emelyanov AV; Nikiruy KE; Serenko AV; Sitnikov AV; Presnyakov MY; Rybka RB; Sboev AG; Rylkov VV; Kashkarov PK; Kovalchuk MV; Demin VA
    Nanotechnology; 2020 Jan; 31(4):045201. PubMed ID: 31578002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STDP and STDP variations with memristors for spiking neuromorphic learning systems.
    Serrano-Gotarredona T; Masquelier T; Prodromakis T; Indiveri G; Linares-Barranco B
    Front Neurosci; 2013; 7():2. PubMed ID: 23423540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a spike-based perceptron learning rule using TiO2-x memristors.
    Mostafa H; Khiat A; Serb A; Mayr CG; Indiveri G; Prodromakis T
    Front Neurosci; 2015; 9():357. PubMed ID: 26483629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits.
    Prezioso M; Mahmoodi MR; Bayat FM; Nili H; Kim H; Vincent A; Strukov DB
    Nat Commun; 2018 Dec; 9(1):5311. PubMed ID: 30552327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing.
    Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.
    Bill J; Legenstein R
    Front Neurosci; 2014; 8():412. PubMed ID: 25565943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thousands of conductance levels in memristors integrated on CMOS.
    Rao M; Tang H; Wu J; Song W; Zhang M; Yin W; Zhuo Y; Kiani F; Chen B; Jiang X; Liu H; Chen HY; Midya R; Ye F; Jiang H; Wang Z; Wu M; Hu M; Wang H; Xia Q; Ge N; Li J; Yang JJ
    Nature; 2023 Mar; 615(7954):823-829. PubMed ID: 36991190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs.
    Du N; Kiani M; Mayr CG; You T; Bürger D; Skorupa I; Schmidt OG; Schmidt H
    Front Neurosci; 2015; 9():227. PubMed ID: 26175666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex.
    Zamarreño-Ramos C; Camuñas-Mesa LA; Pérez-Carrasco JA; Masquelier T; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2011; 5():26. PubMed ID: 21442012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A scalable neural chip with synaptic electronics using CMOS integrated memristors.
    Cruz-Albrecht JM; Derosier T; Srinivasa N
    Nanotechnology; 2013 Sep; 24(38):384011. PubMed ID: 23999447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.
    Covi E; Brivio S; Serb A; Prodromakis T; Fanciulli M; Spiga S
    Front Neurosci; 2016; 10():482. PubMed ID: 27826226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks.
    Brivio S; Ly DRB; Vianello E; Spiga S
    Front Neurosci; 2021; 15():580909. PubMed ID: 33633531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs.
    Du N; Zhao X; Chen Z; Choubey B; Di Ventra M; Skorupa I; Bürger D; Schmidt H
    Front Neurosci; 2021; 15():660894. PubMed ID: 34335153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic behavior and STDP of asymmetric nanoscale memristors in biohybrid systems.
    Williamson A; Schumann L; Hiller L; Klefenz F; Hoerselmann I; Husar P; Schober A
    Nanoscale; 2013 Aug; 5(16):7297-303. PubMed ID: 23817887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse Shape and Timing Dependence on the Spike-Timing Dependent Plasticity Response of Ion-Conducting Memristors as Synapses.
    Campbell KA; Drake KT; Barney Smith EH
    Front Bioeng Biotechnol; 2016; 4():97. PubMed ID: 28083531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromorphic computation with spiking memristors: habituation, experimental instantiation of logic gates and a novel sequence-sensitive perceptron model.
    Gale EM
    Faraday Discuss; 2019 Feb; 213(0):521-551. PubMed ID: 30418449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Adaptive STDP Learning Rule for Neuromorphic Systems.
    Gautam A; Kohno T
    Front Neurosci; 2021; 15():741116. PubMed ID: 34630026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.