These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 26893175)

  • 41. On the Application of a Diffusive Memristor Compact Model to Neuromorphic Circuits.
    Cisternas Ferri A; Rapoport A; Fierens PI; Patterson GA; Miranda E; Suñé J
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31337071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors.
    Dang B; Wu Q; Song F; Sun J; Yang M; Ma X; Wang H; Hao Y
    Nanoscale; 2018 Nov; 10(43):20089-20095. PubMed ID: 30357252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crossbar Nanoscale HfO2-Based Electronic Synapses.
    Matveyev Y; Kirtaev R; Fetisova A; Zakharchenko S; Negrov D; Zenkevich A
    Nanoscale Res Lett; 2016 Dec; 11(1):147. PubMed ID: 26979725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Hybrid CMOS-Memristor Neuromorphic Synapse.
    Azghadi MR; Linares-Barranco B; Abbott D; Leong PH
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):434-445. PubMed ID: 28026782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Harnessing a WO
    Panda D; Hui YF; Tseng TY
    Nanoscale; 2024 Aug; 16(34):16148-16158. PubMed ID: 39114954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parylene Based Memristive Devices with Multilevel Resistive Switching for Neuromorphic Applications.
    Minnekhanov AA; Emelyanov AV; Lapkin DA; Nikiruy KE; Shvetsov BS; Nesmelov AA; Rylkov VV; Demin VA; Erokhin VV
    Sci Rep; 2019 Jul; 9(1):10800. PubMed ID: 31346245
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.
    Wang RM; Hamilton TJ; Tapson JC; van Schaik A
    Front Neurosci; 2015; 9():180. PubMed ID: 26041985
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Implementation of Simple but Powerful Trilayer Oxide-Based Artificial Synapses with a Tailored Bio-Synapse-Like Structure.
    Zhang H; Ju X; Yew KS; Ang DS
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1036-1045. PubMed ID: 31815426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A CMOS-memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity.
    Ahmadi-Farsani J; Ricci S; Hashemkhani S; Ielmini D; Linares-Barranco B; Serrano-Gotarredona T
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210018. PubMed ID: 35658675
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synaptic modifications depend on synapse location and activity: a biophysical model of STDP.
    Saudargiene A; Porr B; Wörgötter F
    Biosystems; 2005; 79(1-3):3-10. PubMed ID: 15649584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-Voltage Oscillatory Neurons for Memristor-Based Neuromorphic Systems.
    Hua Q; Wu H; Gao B; Zhang Q; Wu W; Li Y; Wang X; Hu W; Qian H
    Glob Chall; 2019 Nov; 3(11):1900015. PubMed ID: 31692992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stochastic binary synapses having sigmoidal cumulative distribution functions for unsupervised learning with spike timing-dependent plasticity.
    Nishi Y; Nomura K; Marukame T; Mizushima K
    Sci Rep; 2021 Sep; 11(1):18282. PubMed ID: 34521895
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuronal synapse as a memristor: modeling pair- and triplet-based STDP rule.
    Cai W; Ellinger F; Tetzlaff R
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):87-95. PubMed ID: 24960611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Learning to Approximate Functions Using Nb-Doped SrTiO
    Tiotto TF; Goossens AS; Borst JP; Banerjee T; Taatgen NA
    Front Neurosci; 2020; 14():627276. PubMed ID: 33679290
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Learning through ferroelectric domain dynamics in solid-state synapses.
    Boyn S; Grollier J; Lecerf G; Xu B; Locatelli N; Fusil S; Girod S; Carrétéro C; Garcia K; Xavier S; Tomas J; Bellaiche L; Bibes M; Barthélémy A; Saïghi S; Garcia V
    Nat Commun; 2017 Apr; 8():14736. PubMed ID: 28368007
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bipolar Resistive Switching in TiO
    Jena AK; Sahu MC; Mohanan KU; Mallik SK; Sahoo S; Pradhan GK; Sahoo S
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3574-3585. PubMed ID: 36595219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials.
    Park Y; Lee JS
    ACS Nano; 2017 Sep; 11(9):8962-8969. PubMed ID: 28837313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations.
    Camuñas-Mesa LA; Linares-Barranco B; Serrano-Gotarredona T
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461877
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic and Gradual Conductance Switching Behaviors in CeO
    Li H; Geng S; Liu T; Cao M; Su J
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5456-5465. PubMed ID: 36662834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing.
    Park SO; Jeong H; Park J; Bae J; Choi S
    Nat Commun; 2022 Jun; 13(1):2888. PubMed ID: 35660724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.