These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 26893175)
61. Artificial Neuron and Synapse Devices Based on 2D Materials. Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985 [TBL] [Abstract][Full Text] [Related]
62. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity. Cutsuridis V Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353 [TBL] [Abstract][Full Text] [Related]
63. A Model for R(t) Elements and R(t) -Based Spike-Timing-Dependent Plasticity With Basic Circuit Examples. Ivans RC; Dahl SG; Cantley KD IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4206-4216. PubMed ID: 31869804 [TBL] [Abstract][Full Text] [Related]
64. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence. Wang J; Zhuge X; Zhuge F Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215 [TBL] [Abstract][Full Text] [Related]
65. Chitosan-Based Flexible Memristors with Embedded Carbon Nanotubes for Neuromorphic Electronics. Min JG; Cho WJ Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683310 [TBL] [Abstract][Full Text] [Related]
72. Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity. Zou Q; Bornat Y; Saïghi S; Tomas J; Renaud S; Destexhe A Network; 2006 Sep; 17(3):211-33. PubMed ID: 17162612 [TBL] [Abstract][Full Text] [Related]
73. What can a neuron learn with spike-timing-dependent plasticity? Legenstein R; Naeger C; Maass W Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932 [TBL] [Abstract][Full Text] [Related]
74. Single neuromorphic memristor closely emulates multiple synaptic mechanisms for energy efficient neural networks. Weilenmann C; Ziogas AN; Zellweger T; Portner K; Mladenović M; Kaniselvan M; Moraitis T; Luisier M; Emboras A Nat Commun; 2024 Aug; 15(1):6898. PubMed ID: 39138160 [TBL] [Abstract][Full Text] [Related]
75. Plasmonic Optoelectronic Memristor Enabling Fully Light-Modulated Synaptic Plasticity for Neuromorphic Vision. Shan X; Zhao C; Wang X; Wang Z; Fu S; Lin Y; Zeng T; Zhao X; Xu H; Zhang X; Liu Y Adv Sci (Weinh); 2022 Feb; 9(6):e2104632. PubMed ID: 34967152 [TBL] [Abstract][Full Text] [Related]
76. An event-based neural network architecture with an asynchronous programmable synaptic memory. Moradi S; Indiveri G IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):98-107. PubMed ID: 24681923 [TBL] [Abstract][Full Text] [Related]
77. Breaking Liebig's Law: An Advanced Multipurpose Neuromorphic Engine. Wang R; van Schaik A Front Neurosci; 2018; 12():593. PubMed ID: 30210278 [TBL] [Abstract][Full Text] [Related]
78. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit. Kwon MW; Baek MH; Hwang S; Kim S; Park BG J Nanosci Nanotechnol; 2018 Sep; 18(9):6588-6592. PubMed ID: 29677839 [TBL] [Abstract][Full Text] [Related]
79. A neuromorphic depth-from-motion vision model with STDP adaptation. Yang Z; Murray A; Wörgötter F; Cameron K; Boonsobhak V IEEE Trans Neural Netw; 2006 Mar; 17(2):482-95. PubMed ID: 16566474 [TBL] [Abstract][Full Text] [Related]