These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 26893175)

  • 61. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Model for R(t) Elements and R(t) -Based Spike-Timing-Dependent Plasticity With Basic Circuit Examples.
    Ivans RC; Dahl SG; Cantley KD
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4206-4216. PubMed ID: 31869804
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chitosan-Based Flexible Memristors with Embedded Carbon Nanotubes for Neuromorphic Electronics.
    Min JG; Cho WJ
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683310
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Memristor-CMOS Hybrid Circuits Implementing Event-Driven Neural Networks for Dynamic Vision Sensor Camera.
    Yoon R; Oh S; Cho S; Min KS
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675238
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics.
    Brivio S; Conti D; Nair MV; Frascaroli J; Covi E; Ricciardi C; Indiveri G; Spiga S
    Nanotechnology; 2019 Jan; 30(1):015102. PubMed ID: 30378572
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A bi-functional three-terminal memristor applicable as an artificial synapse and neuron.
    Liu L; Dananjaya PA; Ang CCI; Koh EK; Lim GJ; Poh HY; Chee MY; Lee CXX; Lew WS
    Nanoscale; 2023 Nov; 15(42):17076-17084. PubMed ID: 37847400
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Artificial sensory system based on memristive devices.
    Kwon JY; Kim JE; Kim JS; Chun SY; Soh K; Yoon JH
    Exploration (Beijing); 2024 Feb; 4(1):20220162. PubMed ID: 38854486
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Brain-Inspired Homeostatic Neuron Based on Phase-Change Memories for Efficient Neuromorphic Computing.
    Muñoz-Martin I; Bianchi S; Hashemkhani S; Pedretti G; Melnic O; Ielmini D
    Front Neurosci; 2021; 15():709053. PubMed ID: 34489628
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adaptive STDP-based on-chip spike pattern detection.
    Gautam A; Kohno T
    Front Neurosci; 2023; 17():1203956. PubMed ID: 37521704
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity.
    Zou Q; Bornat Y; Saïghi S; Tomas J; Renaud S; Destexhe A
    Network; 2006 Sep; 17(3):211-33. PubMed ID: 17162612
    [TBL] [Abstract][Full Text] [Related]  

  • 73. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single neuromorphic memristor closely emulates multiple synaptic mechanisms for energy efficient neural networks.
    Weilenmann C; Ziogas AN; Zellweger T; Portner K; Mladenović M; Kaniselvan M; Moraitis T; Luisier M; Emboras A
    Nat Commun; 2024 Aug; 15(1):6898. PubMed ID: 39138160
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plasmonic Optoelectronic Memristor Enabling Fully Light-Modulated Synaptic Plasticity for Neuromorphic Vision.
    Shan X; Zhao C; Wang X; Wang Z; Fu S; Lin Y; Zeng T; Zhao X; Xu H; Zhang X; Liu Y
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104632. PubMed ID: 34967152
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An event-based neural network architecture with an asynchronous programmable synaptic memory.
    Moradi S; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):98-107. PubMed ID: 24681923
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Breaking Liebig's Law: An Advanced Multipurpose Neuromorphic Engine.
    Wang R; van Schaik A
    Front Neurosci; 2018; 12():593. PubMed ID: 30210278
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.
    Kwon MW; Baek MH; Hwang S; Kim S; Park BG
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6588-6592. PubMed ID: 29677839
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A neuromorphic depth-from-motion vision model with STDP adaptation.
    Yang Z; Murray A; Wörgötter F; Cameron K; Boonsobhak V
    IEEE Trans Neural Netw; 2006 Mar; 17(2):482-95. PubMed ID: 16566474
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation.
    Ren Q; Zhang Y; Wang R; Zhao J
    Opt Express; 2015 Sep; 23(19):25247-58. PubMed ID: 26406722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.