These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26893347)

  • 41. mTORC1 Regulates the Metabolic Switch of Postnatal Cardiomyocytes During Regeneration.
    Paltzer WG; Aballo TJ; Bae J; Hubert KA; Nuttall DJ; Perry C; Wanless KN; Nahlawi R; Ge Y; Mahmoud AI
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nkx2.5: a crucial regulator of cardiac development, regeneration and diseases.
    Cao C; Li L; Zhang Q; Li H; Wang Z; Wang A; Liu J
    Front Cardiovasc Med; 2023; 10():1270951. PubMed ID: 38124890
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The characterization of protein lactylation in relation to cardiac metabolic reprogramming in neonatal mouse hearts.
    Zhang T; Zhu Y; Wang X; Chong D; Wang H; Bu D; Zhao M; Fang L; Li C
    J Genet Genomics; 2024 Jul; 51(7):735-748. PubMed ID: 38479452
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cardiomyocyte-fibroblast interaction regulates ferroptosis and fibrosis after myocardial injury.
    Mohr ME; Li S; Trouten AM; Stairley RA; Roddy PL; Liu C; Zhang M; Sucov HM; Tao G
    iScience; 2024 Mar; 27(3):109219. PubMed ID: 38469561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap.
    Castellan RFP; Meloni M
    Front Cardiovasc Med; 2018; 5():7. PubMed ID: 29459901
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterizing Neonatal Heart Maturation, Regeneration, and Scar Resolution Using Spatial Transcriptomics.
    Misra A; Baker CD; Pritchett EM; Burgos Villar KN; Ashton JM; Small EM
    J Cardiovasc Dev Dis; 2021 Dec; 9(1):. PubMed ID: 35050211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes.
    Psarras S; Beis D; Nikouli S; Tsikitis M; Capetanaki Y
    Front Cardiovasc Med; 2019; 6():32. PubMed ID: 31001541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Harnessing the regenerative potential of
    Shin K; Rodriguez-Parks A; Kim C; Silaban IM; Xia Y; Sun J; Dong C; Keles S; Wang J; Cao J; Kang J
    bioRxiv; 2024 Jun; ():. PubMed ID: 38352555
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Watershed Finding for Heart Regeneration.
    Bardot ES; Dubois NC
    Cell; 2019 Feb; 176(5):947-949. PubMed ID: 30794778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Myoglobin modulates the Hippo pathway to promote cardiomyocyte differentiation.
    Rao K; Rochon E; Singh A; Jagannathan R; Peng Z; Mansoor H; Wang B; Moulik M; Zhang M; Saraf A; Corti P; Shiva S
    iScience; 2024 Mar; 27(3):109146. PubMed ID: 38414852
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiac Regeneration: New Insights Into the Frontier of Ischemic Heart Failure Therapy.
    Riching AS; Song K
    Front Bioeng Biotechnol; 2020; 8():637538. PubMed ID: 33585427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CircSorbs1 regulates myocardial regeneration and reduces cancer therapy-related cardiovascular toxicity through the Mir-99/GATA4 pathway.
    Huang K; Huang D; Li Q; Zeng J; Qin T; Zhong J; Zhong Z; Lu S
    Discov Oncol; 2024 Jul; 15(1):319. PubMed ID: 39080192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration.
    Allanki S; Strilic B; Scheinberger L; Onderwater YL; Marks A; Günther S; Preussner J; Kikhi K; Looso M; Stainier DYR; Reischauer S
    Sci Adv; 2021 Sep; 7(37):eabg6497. PubMed ID: 34516874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The PD-1-PD-L1 pathway maintains an immunosuppressive environment essential for neonatal heart regeneration.
    Vargas Aguilar S; Cui M; Tan W; Sanchez-Ortiz E; Bassel-Duby R; Liu N; Olson EN
    Nat Cardiovasc Res; 2024 Mar; 3(3):389-402. PubMed ID: 38737787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rtf1 Transcriptionally Regulates Neonatal and Adult Cardiomyocyte Biology.
    Langenbacher AD; Lu F; Crisman L; Huang ZYS; Chapski DJ; Vondriska TM; Wang Y; Gao C; Chen JN
    J Cardiovasc Dev Dis; 2023 May; 10(5):. PubMed ID: 37233188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light sheet imaging and interactive analysis of the cardiac structure in neonatal mice.
    Sodimu O; Almasian M; Gan P; Hassan S; Zhang X; Liu N; Ding Y
    J Biophotonics; 2023 May; 16(5):e202200278. PubMed ID: 36624523
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The impact of aging on cardiac repair and regeneration.
    Anwar I; Wang X; Pratt RE; Dzau VJ; Hodgkinson CP
    J Biol Chem; 2024 Aug; 300(9):107682. PubMed ID: 39159819
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Corrigendum to 'Bmi-1-RING1B prevents GATA4-dependent senescence-associated pathological cardiac hypertrophy by promoting autophagic degradation of GATA4'.
    Clin Transl Med; 2024 Jul; 14(7):e1748. PubMed ID: 38923722
    [No Abstract]   [Full Text] [Related]  

  • 59. Cutting the molecular brakes to achieve cardiac regeneration.
    Nelson VL; Brunt KR
    Cell Death Differ; 2021 Mar; 28(3):1126-1129. PubMed ID: 33510425
    [No Abstract]   [Full Text] [Related]  

  • 60. Mechanisms of Cardiac Regeneration.
    Uygur A; Lee RT
    Dev Cell; 2016 Feb; 36(4):362-74. PubMed ID: 26906733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.