These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26893611)

  • 1. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system.
    Lai B; Yu S; Bernhardt PV; Rabaey K; Virdis B; Krömer JO
    Biotechnol Biofuels; 2016; 9():39. PubMed ID: 26893611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Anoxic Phenotype of
    Lai B; Nguyen AV; Krömer JO
    Methods Protoc; 2019 Mar; 2(2):. PubMed ID: 31164607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The anoxic electrode-driven fructose catabolism of Pseudomonas putida KT2440.
    Nguyen AV; Lai B; Adrian L; Krömer JO
    Microb Biotechnol; 2021 Jul; 14(4):1784-1796. PubMed ID: 34115443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440.
    Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA
    Front Microbiol; 2015; 6():284. PubMed ID: 25914687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling anoxic acetate assimilation by electrode-driven respiration in the obligate aerobe, Pseudomonas putida.
    Mutyala S; Kim C; Song YE; Khandelwal H; Baek J; Seol E; Oh YK; Kim JR
    Bioelectrochemistry; 2021 Apr; 138():107690. PubMed ID: 33190096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling an Electroactive
    Askitosari TD; Berger C; Tiso T; Harnisch F; Blank LM; Rosenbaum MA
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33322018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase.
    Yu S; Lai B; Plan MR; Hodson MP; Lestari EA; Song H; Krömer JO
    Biotechnol Bioeng; 2018 Jan; 115(1):145-155. PubMed ID: 28921555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.
    Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A
    FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic glucose uptake in Pseudomonas putida KT2440 in a bioelectrochemical system.
    Pause L; Weimer A; Wirth NT; Nguyen AV; Lenz C; Kohlstedt M; Wittmann C; Nikel PI; Lai B; Krömer JO
    Microb Biotechnol; 2024 Jan; 17(1):e14375. PubMed ID: 37990843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440.
    Xu Z; Pan C; Li X; Hao N; Zhang T; Gaffrey MJ; Pu Y; Cort JR; Ragauskas AJ; Qian WJ; Yang B
    Biotechnol Biofuels; 2021 Jan; 14(1):11. PubMed ID: 33413621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing Pseudomonas putida in bioelectrochemical systems.
    Qi X; Gao X; Wang X; Xu P
    Trends Biotechnol; 2024 Jul; 42(7):877-894. PubMed ID: 38184440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa.
    Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA
    Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene.
    Nikel PI; de Lorenzo V
    Metab Eng; 2013 Jan; 15():98-112. PubMed ID: 23149123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions.
    Kampers LFC; van Heck RGA; Donati S; Saccenti E; Volkers RJM; Schaap PJ; Suarez-Diez M; Nikel PI; Martins Dos Santos VAP
    Microb Cell Fact; 2019 Oct; 18(1):179. PubMed ID: 31640713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida.
    Borrero-de Acuña JM; Bielecka A; Häussler S; Schobert M; Jahn M; Wittmann C; Jahn D; Poblete-Castro I
    Microb Cell Fact; 2014 Jun; 13():88. PubMed ID: 24948031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-aerobic production of isobutanol with engineered
    Ankenbauer A; Nitschel R; Teleki A; Müller T; Favilli L; Blombach B; Takors R
    Eng Life Sci; 2021 Jul; 21(7):475-488. PubMed ID: 34257629
    [No Abstract]   [Full Text] [Related]  

  • 18. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria.
    Volke DC; Olavarría K; Nikel PI
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33727391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model.
    Bujdoš D; Popelářová B; Volke DC; Nikel PI; Sonnenschein N; Dvořák P
    Metab Eng; 2023 Jan; 75():29-46. PubMed ID: 36343876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition.
    van Duuren JB; Puchałka J; Mars AE; Bücker R; Eggink G; Wittmann C; Dos Santos VA
    BMC Biotechnol; 2013 Oct; 13():93. PubMed ID: 24168623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.