BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26893974)

  • 1. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy.
    Cao J; Wang L; Lan H
    PeerJ; 2016; 4():e1697. PubMed ID: 26893974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses.
    Cheng G; Wang L; Lan H
    Enzyme Microb Technol; 2016 Feb; 83():57-67. PubMed ID: 26777251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of genetic and environmental factors on variations of seed heteromorphism in
    Cao J; Chen L; Wang J; Xing J; Lv X; Maimaitijiang T; Lan H
    AoB Plants; 2020 Oct; 12(5):plaa044. PubMed ID: 33072248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR.
    Xiao X; Ma J; Wang J; Wu X; Li P; Yao Y
    Front Plant Sci; 2014; 5():788. PubMed ID: 25653658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy.
    Wang L; Huang Z; Baskin CC; Baskin JM; Dong M
    Ann Bot; 2008 Nov; 102(5):757-69. PubMed ID: 18772148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of reference genes for quantitative real-time PCR analysis in halophytic plant
    Saddhe AA; Malvankar MR; Kumar K
    PeerJ; 2018; 6():e5226. PubMed ID: 30013853
    [No Abstract]   [Full Text] [Related]  

  • 7. Genome-Wide Characterization and Analysis of the bHLH Transcription Factor Family in
    Wei X; Cao J; Lan H
    Front Genet; 2022; 13():927830. PubMed ID: 35873472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome assembly in Suaeda aralocaspica to reveal the distinct temporal gene/miRNA alterations between the dimorphic seeds during germination.
    Wang L; Wang HL; Yin L; Tian CY
    BMC Genomics; 2017 Oct; 18(1):806. PubMed ID: 29052505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization in
    Tang J; Liang G; Dong S; Shan S; Zhao M; Guo X
    Front Physiol; 2022; 13():842195. PubMed ID: 35273523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of reference genes for qRT-PCR data normalisation in lentil (
    Sinha R; Sharma TR; Singh AK
    Physiol Mol Biol Plants; 2019 Jan; 25(1):123-134. PubMed ID: 30804635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of reliable reference genes for quantitative real-time RT-PCR in alfalfa.
    Wang X; Fu Y; Ban L; Wang Z; Feng G; Li J; Gao H
    Genes Genet Syst; 2015; 90(3):175-80. PubMed ID: 26510572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Identification and Analysis of the Phosphoenolpyruvate Carboxylase Gene Family in
    Cao J; Cheng G; Wang L; Maimaitijiang T; Lan H
    Front Plant Sci; 2021; 12():665279. PubMed ID: 34527003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L.) Dunal.
    Singh V; Kaul SC; Wadhwa R; Pati PK
    PLoS One; 2015; 10(3):e0118860. PubMed ID: 25769035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of appropriate reference genes for quantitative real-time reverse transcription PCR in Betula platyphylla under salt and osmotic stress conditions.
    Li Z; Lu H; He Z; Wang C; Wang Y; Ji X
    PLoS One; 2019; 14(12):e0225926. PubMed ID: 31794584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Reference Genes for Quantitative Gene Expression Studies in a Non-Model Tree Pistachio (Pistacia vera L.).
    Moazzam Jazi M; Ghadirzadeh Khorzoghi E; Botanga C; Seyedi SM
    PLoS One; 2016; 11(6):e0157467. PubMed ID: 27308855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of internal control for gene expression in Phalaenopsis by quantitative real-time PCR.
    Yuan XY; Jiang SH; Wang MF; Ma J; Zhang XY; Cui B
    Appl Biochem Biotechnol; 2014 Jul; 173(6):1431-45. PubMed ID: 24811734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of salinity on the growth, physiology and relevant gene expression of an annual halophyte grown from heteromorphic seeds.
    Cao J; Lv XY; Chen L; Xing JJ; Lan HY
    AoB Plants; 2015 Sep; 7():. PubMed ID: 26386128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference gene selection for quantitative real-time PCR (qRT-PCR) expression analysis in Galium aparine L.
    Su X; Lu L; Li Y; Zhen C; Hu G; Jiang K; Yan Y; Xu Y; Wang G; Shi M; Chen X; Zhang B
    PLoS One; 2020; 15(2):e0226668. PubMed ID: 32017769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of suitable reference genes in buffalo grass for accurate transcript normalization under various abiotic stress conditions.
    Li W; Qian YQ; Han L; Liu JX; Sun ZY
    Gene; 2014 Aug; 547(1):55-62. PubMed ID: 24914494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection and validation of reference genes for target gene analysis with quantitative RT-PCR in leaves and roots of bermudagrass under four different abiotic stresses.
    Chen Y; Tan Z; Hu B; Yang Z; Xu B; Zhuang L; Huang B
    Physiol Plant; 2015 Oct; 155(2):138-148. PubMed ID: 25331743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.