These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 26894260)

  • 1. Entrapment of Water at the Transmembrane Helix-Helix Interface of Quiescin Sulfhydryl Oxidase 2.
    Ried CL; Scharnagl C; Langosch D
    Biochemistry; 2016 Mar; 55(9):1287-90. PubMed ID: 26894260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSOX contains a pseudo-dimer of functional and degenerate sulfhydryl oxidase domains.
    Alon A; Heckler EJ; Thorpe C; Fass D
    FEBS Lett; 2010 Apr; 584(8):1521-5. PubMed ID: 20211621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inhibitory antibody blocks the first step in the dithiol/disulfide relay mechanism of the enzyme QSOX1.
    Grossman I; Alon A; Ilani T; Fass D
    J Mol Biol; 2013 Nov; 425(22):4366-78. PubMed ID: 23867277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers.
    Steindorf D; Schneider D
    Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):245-256. PubMed ID: 27915045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles.
    Lear JD; Gratkowski H; Adamian L; Liang J; DeGrado WF
    Biochemistry; 2003 Jun; 42(21):6400-7. PubMed ID: 12767221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversification of quiescin sulfhydryl oxidase in a preserved framework for redox relay.
    Limor-Waisberg K; Ben-Dor S; Fass D
    BMC Evol Biol; 2013 Mar; 13():70. PubMed ID: 23510202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Six amino acids define a minimal dimerization sequence and stabilize a transmembrane helix dimer by close packing and hydrogen bonding.
    Weber M; Schneider D
    FEBS Lett; 2013 Jun; 587(11):1592-6. PubMed ID: 23583446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations to determine the optimal loop length in the helix-loop-helix motif.
    Liu HL; Shu YC; Wu YH
    J Biomol Struct Dyn; 2003 Jun; 20(6):741-5. PubMed ID: 12744703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying ionic interactions within a membrane using BLaTM, a genetic tool to measure homo- and heterotypic transmembrane helix-helix interactions.
    Schanzenbach C; Schmidt FC; Breckner P; Teese MG; Langosch D
    Sci Rep; 2017 Mar; 7():43476. PubMed ID: 28266525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of dissimilatory sulfite reductase D (DsrD) protein--possible interaction with B- and Z-DNA by its winged-helix motif.
    Mizuno N; Voordouw G; Miki K; Sarai A; Higuchi Y
    Structure; 2003 Sep; 11(9):1133-40. PubMed ID: 12962631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutational study of transmembrane helix-helix interactions.
    Prodöhl A; Weber M; Dreher C; Schneider D
    Biochimie; 2007 Nov; 89(11):1433-7. PubMed ID: 17688996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane helix dimerization: beyond the search for sequence motifs.
    Li E; Wimley WC; Hristova K
    Biochim Biophys Acta; 2012 Feb; 1818(2):183-93. PubMed ID: 21910966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erv2 and quiescin sulfhydryl oxidases: Erv-domain enzymes associated with the secretory pathway.
    Sevier CS
    Antioxid Redox Signal; 2012 Apr; 16(8):800-8. PubMed ID: 22142242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stability of transmembrane helix interactions measured in a biological membrane.
    Finger C; Volkmer T; Prodöhl A; Otzen DE; Engelman DM; Schneider D
    J Mol Biol; 2006 May; 358(5):1221-8. PubMed ID: 16574146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of thermodynamic parameters for hydrophobic mismatch 1: self-association of a transmembrane helix.
    Yano Y; Matsuzaki K
    Biochemistry; 2006 Mar; 45(10):3370-8. PubMed ID: 16519531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The quiescin sulfhydryl oxidase (hQSOX1b) tunes the expression of resistin-like molecule alpha (RELM-α or mFIZZ1) in a wheat germ cell-free extract.
    Gad W; Nair MG; Van Belle K; Wahni K; De Greve H; Van Ginderachter JA; Vandenbussche G; Endo Y; Artis D; Messens J
    PLoS One; 2013; 8(1):e55621. PubMed ID: 23383248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.
    Johnson RM; Rath A; Deber CM
    Biochem Cell Biol; 2006 Dec; 84(6):1006-12. PubMed ID: 17215886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.